Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2x-1\right)^{2}=0
Whakawehea ngā taha e rua ki te 3. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
4x^{2}-4x+1=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-1\right)^{2}.
a+b=-4 ab=4\times 1=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-2 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(4x^{2}-2x\right)+\left(-2x+1\right)
Tuhia anō te 4x^{2}-4x+1 hei \left(4x^{2}-2x\right)+\left(-2x+1\right).
2x\left(2x-1\right)-\left(2x-1\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(2x-1\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2x-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=\frac{1}{2}
Hei kimi i te otinga whārite, whakaotia te 2x-1=0.
\left(2x-1\right)^{2}=0
Whakawehea ngā taha e rua ki te 3. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
4x^{2}-4x+1=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-1\right)^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -4 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2\times 4}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2\times 4}
Tāpiri 16 ki te -16.
x=-\frac{-4}{2\times 4}
Tuhia te pūtakerua o te 0.
x=\frac{4}{2\times 4}
Ko te tauaro o -4 ko 4.
x=\frac{4}{8}
Whakareatia 2 ki te 4.
x=\frac{1}{2}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\left(2x-1\right)^{2}=0
Whakawehea ngā taha e rua ki te 3. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
4x^{2}-4x+1=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-1\right)^{2}.
4x^{2}-4x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}-4x}{4}=-\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{4}{4}\right)x=-\frac{1}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-x=-\frac{1}{4}
Whakawehe -4 ki te 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{-1+1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=0
Tāpiri -\frac{1}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=0
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=0 x-\frac{1}{2}=0
Whakarūnātia.
x=\frac{1}{2} x=\frac{1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
x=\frac{1}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.