Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(6x+3\right)\left(2x-1\right)-4\left(3x-2\right)\left(3x+2\right)+6x\left(4x+1\right)=31
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x+1.
12x^{2}-3-4\left(3x-2\right)\left(3x+2\right)+6x\left(4x+1\right)=31
Whakamahia te āhuatanga tuaritanga hei whakarea te 6x+3 ki te 2x-1 ka whakakotahi i ngā kupu rite.
12x^{2}-3-4\left(3x-2\right)\left(3x+2\right)+24x^{2}+6x=31
Whakamahia te āhuatanga tohatoha hei whakarea te 6x ki te 4x+1.
12x^{2}-3+\left(-12x+8\right)\left(3x+2\right)+24x^{2}+6x=31
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3x-2.
12x^{2}-3-36x^{2}+16+24x^{2}+6x=31
Whakamahia te āhuatanga tuaritanga hei whakarea te -12x+8 ki te 3x+2 ka whakakotahi i ngā kupu rite.
-24x^{2}-3+16+24x^{2}+6x=31
Pahekotia te 12x^{2} me -36x^{2}, ka -24x^{2}.
-24x^{2}+13+24x^{2}+6x=31
Tāpirihia te -3 ki te 16, ka 13.
13+6x=31
Pahekotia te -24x^{2} me 24x^{2}, ka 0.
6x=31-13
Tangohia te 13 mai i ngā taha e rua.
6x=18
Tangohia te 13 i te 31, ka 18.
x=\frac{18}{6}
Whakawehea ngā taha e rua ki te 6.
x=3
Whakawehea te 18 ki te 6, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}