Whakaoti mō w
w=-\frac{1}{3}\approx -0.333333333
Tohaina
Kua tāruatia ki te papatopenga
2w+4=\frac{10}{3}
Whakawehea ngā taha e rua ki te 3.
2w=\frac{10}{3}-4
Tangohia te 4 mai i ngā taha e rua.
2w=\frac{10}{3}-\frac{12}{3}
Me tahuri te 4 ki te hautau \frac{12}{3}.
2w=\frac{10-12}{3}
Tā te mea he rite te tauraro o \frac{10}{3} me \frac{12}{3}, me tango rāua mā te tango i ō raua taurunga.
2w=-\frac{2}{3}
Tangohia te 12 i te 10, ka -2.
w=\frac{-\frac{2}{3}}{2}
Whakawehea ngā taha e rua ki te 2.
w=\frac{-2}{3\times 2}
Tuhia te \frac{-\frac{2}{3}}{2} hei hautanga kotahi.
w=\frac{-2}{6}
Whakareatia te 3 ki te 2, ka 6.
w=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}