Whakaoti mō w
w=4
w=12
Tohaina
Kua tāruatia ki te papatopenga
6\left(3\times \left(\frac{w}{6}\right)^{2}-8\times \frac{w}{6}\right)+24=0
Whakareatia ngā taha e rua o te whārite ki te 6.
6\left(3\times \frac{w^{2}}{6^{2}}-8\times \frac{w}{6}\right)+24=0
Kia whakarewa i te \frac{w}{6} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
6\left(\frac{3w^{2}}{6^{2}}-8\times \frac{w}{6}\right)+24=0
Tuhia te 3\times \frac{w^{2}}{6^{2}} hei hautanga kotahi.
6\left(\frac{3w^{2}}{6^{2}}-\frac{8w}{6}\right)+24=0
Tuhia te 8\times \frac{w}{6} hei hautanga kotahi.
6\left(\frac{3w^{2}}{6^{2}}-\frac{4}{3}w\right)+24=0
Whakawehea te 8w ki te 6, kia riro ko \frac{4}{3}w.
6\times \frac{3w^{2}}{6^{2}}+6\left(-\frac{4}{3}w\right)+24=0
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te \frac{3w^{2}}{6^{2}}-\frac{4}{3}w.
6\times \frac{3w^{2}}{36}+6\left(-\frac{4}{3}w\right)+24=0
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
6\times \frac{1}{12}w^{2}+6\left(-\frac{4}{3}w\right)+24=0
Whakawehea te 3w^{2} ki te 36, kia riro ko \frac{1}{12}w^{2}.
\frac{1}{2}w^{2}+6\left(-\frac{4}{3}w\right)+24=0
Whakareatia te 6 ki te \frac{1}{12}, ka \frac{1}{2}.
\frac{1}{2}w^{2}-6\times \frac{4}{3}w+24=0
Whakareatia te 6 ki te -1, ka -6.
\frac{1}{2}w^{2}-8w+24=0
Whakareatia te -6 ki te \frac{4}{3}, ka -8.
w=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times \frac{1}{2}\times 24}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, -8 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-8\right)±\sqrt{64-4\times \frac{1}{2}\times 24}}{2\times \frac{1}{2}}
Pūrua -8.
w=\frac{-\left(-8\right)±\sqrt{64-2\times 24}}{2\times \frac{1}{2}}
Whakareatia -4 ki te \frac{1}{2}.
w=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times \frac{1}{2}}
Whakareatia -2 ki te 24.
w=\frac{-\left(-8\right)±\sqrt{16}}{2\times \frac{1}{2}}
Tāpiri 64 ki te -48.
w=\frac{-\left(-8\right)±4}{2\times \frac{1}{2}}
Tuhia te pūtakerua o te 16.
w=\frac{8±4}{2\times \frac{1}{2}}
Ko te tauaro o -8 ko 8.
w=\frac{8±4}{1}
Whakareatia 2 ki te \frac{1}{2}.
w=\frac{12}{1}
Nā, me whakaoti te whārite w=\frac{8±4}{1} ina he tāpiri te ±. Tāpiri 8 ki te 4.
w=12
Whakawehe 12 ki te 1.
w=\frac{4}{1}
Nā, me whakaoti te whārite w=\frac{8±4}{1} ina he tango te ±. Tango 4 mai i 8.
w=4
Whakawehe 4 ki te 1.
w=12 w=4
Kua oti te whārite te whakatau.
6\left(3\times \left(\frac{w}{6}\right)^{2}-8\times \frac{w}{6}\right)+24=0
Whakareatia ngā taha e rua o te whārite ki te 6.
6\left(3\times \frac{w^{2}}{6^{2}}-8\times \frac{w}{6}\right)+24=0
Kia whakarewa i te \frac{w}{6} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
6\left(\frac{3w^{2}}{6^{2}}-8\times \frac{w}{6}\right)+24=0
Tuhia te 3\times \frac{w^{2}}{6^{2}} hei hautanga kotahi.
6\left(\frac{3w^{2}}{6^{2}}-\frac{8w}{6}\right)+24=0
Tuhia te 8\times \frac{w}{6} hei hautanga kotahi.
6\left(\frac{3w^{2}}{6^{2}}-\frac{4}{3}w\right)+24=0
Whakawehea te 8w ki te 6, kia riro ko \frac{4}{3}w.
6\times \frac{3w^{2}}{6^{2}}+6\left(-\frac{4}{3}w\right)+24=0
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te \frac{3w^{2}}{6^{2}}-\frac{4}{3}w.
6\times \frac{3w^{2}}{36}+6\left(-\frac{4}{3}w\right)+24=0
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
6\times \frac{1}{12}w^{2}+6\left(-\frac{4}{3}w\right)+24=0
Whakawehea te 3w^{2} ki te 36, kia riro ko \frac{1}{12}w^{2}.
\frac{1}{2}w^{2}+6\left(-\frac{4}{3}w\right)+24=0
Whakareatia te 6 ki te \frac{1}{12}, ka \frac{1}{2}.
\frac{1}{2}w^{2}+6\left(-\frac{4}{3}w\right)=-24
Tangohia te 24 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{1}{2}w^{2}-6\times \frac{4}{3}w=-24
Whakareatia te 6 ki te -1, ka -6.
\frac{1}{2}w^{2}-8w=-24
Whakareatia te -6 ki te \frac{4}{3}, ka -8.
\frac{\frac{1}{2}w^{2}-8w}{\frac{1}{2}}=-\frac{24}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
w^{2}+\left(-\frac{8}{\frac{1}{2}}\right)w=-\frac{24}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
w^{2}-16w=-\frac{24}{\frac{1}{2}}
Whakawehe -8 ki te \frac{1}{2} mā te whakarea -8 ki te tau huripoki o \frac{1}{2}.
w^{2}-16w=-48
Whakawehe -24 ki te \frac{1}{2} mā te whakarea -24 ki te tau huripoki o \frac{1}{2}.
w^{2}-16w+\left(-8\right)^{2}=-48+\left(-8\right)^{2}
Whakawehea te -16, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -8. Nā, tāpiria te pūrua o te -8 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}-16w+64=-48+64
Pūrua -8.
w^{2}-16w+64=16
Tāpiri -48 ki te 64.
\left(w-8\right)^{2}=16
Tauwehea w^{2}-16w+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-8\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w-8=4 w-8=-4
Whakarūnātia.
w=12 w=4
Me tāpiri 8 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}