Whakaoti mō x
x=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}\left(\frac{7}{3}x+\frac{1}{3}\right)=2x+1
Whakareatia te 3 ki te \frac{1}{2}, ka \frac{3}{2}.
\frac{3}{2}\times \frac{7}{3}x+\frac{3}{2}\times \frac{1}{3}=2x+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{2} ki te \frac{7}{3}x+\frac{1}{3}.
\frac{3\times 7}{2\times 3}x+\frac{3}{2}\times \frac{1}{3}=2x+1
Me whakarea te \frac{3}{2} ki te \frac{7}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{2}x+\frac{3}{2}\times \frac{1}{3}=2x+1
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{7}{2}x+\frac{3\times 1}{2\times 3}=2x+1
Me whakarea te \frac{3}{2} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{2}x+\frac{1}{2}=2x+1
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{7}{2}x+\frac{1}{2}-2x=1
Tangohia te 2x mai i ngā taha e rua.
\frac{3}{2}x+\frac{1}{2}=1
Pahekotia te \frac{7}{2}x me -2x, ka \frac{3}{2}x.
\frac{3}{2}x=1-\frac{1}{2}
Tangohia te \frac{1}{2} mai i ngā taha e rua.
\frac{3}{2}x=\frac{2}{2}-\frac{1}{2}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{3}{2}x=\frac{2-1}{2}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{2}x=\frac{1}{2}
Tangohia te 1 i te 2, ka 1.
x=\frac{1}{2}\times \frac{2}{3}
Me whakarea ngā taha e rua ki te \frac{2}{3}, te tau utu o \frac{3}{2}.
x=\frac{1\times 2}{2\times 3}
Me whakarea te \frac{1}{2} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{1}{3}
Me whakakore tahi te 2 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}