Whakaoti mō x
x = -\frac{55}{9} = -6\frac{1}{9} \approx -6.111111111
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)=-4
Me whakakore te 3 me te 3.
\frac{2}{6}-\frac{3}{4}\left(2x+18\right)=-4
Whakareatia te 2 ki te \frac{1}{6}, ka \frac{2}{6}.
\frac{1}{3}-\frac{3}{4}\left(2x+18\right)=-4
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{3}-\frac{3}{4}\times 2x-\frac{3}{4}\times 18=-4
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{4} ki te 2x+18.
\frac{1}{3}+\frac{-3\times 2}{4}x-\frac{3}{4}\times 18=-4
Tuhia te -\frac{3}{4}\times 2 hei hautanga kotahi.
\frac{1}{3}+\frac{-6}{4}x-\frac{3}{4}\times 18=-4
Whakareatia te -3 ki te 2, ka -6.
\frac{1}{3}-\frac{3}{2}x-\frac{3}{4}\times 18=-4
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{3}-\frac{3}{2}x+\frac{-3\times 18}{4}=-4
Tuhia te -\frac{3}{4}\times 18 hei hautanga kotahi.
\frac{1}{3}-\frac{3}{2}x+\frac{-54}{4}=-4
Whakareatia te -3 ki te 18, ka -54.
\frac{1}{3}-\frac{3}{2}x-\frac{27}{2}=-4
Whakahekea te hautanga \frac{-54}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{6}-\frac{3}{2}x-\frac{81}{6}=-4
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{1}{3} me \frac{27}{2} ki te hautau me te tautūnga 6.
\frac{2-81}{6}-\frac{3}{2}x=-4
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{81}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{79}{6}-\frac{3}{2}x=-4
Tangohia te 81 i te 2, ka -79.
-\frac{3}{2}x=-4+\frac{79}{6}
Me tāpiri te \frac{79}{6} ki ngā taha e rua.
-\frac{3}{2}x=-\frac{24}{6}+\frac{79}{6}
Me tahuri te -4 ki te hautau -\frac{24}{6}.
-\frac{3}{2}x=\frac{-24+79}{6}
Tā te mea he rite te tauraro o -\frac{24}{6} me \frac{79}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{3}{2}x=\frac{55}{6}
Tāpirihia te -24 ki te 79, ka 55.
x=\frac{55}{6}\left(-\frac{2}{3}\right)
Me whakarea ngā taha e rua ki te -\frac{2}{3}, te tau utu o -\frac{3}{2}.
x=\frac{55\left(-2\right)}{6\times 3}
Me whakarea te \frac{55}{6} ki te -\frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-110}{18}
Mahia ngā whakarea i roto i te hautanga \frac{55\left(-2\right)}{6\times 3}.
x=-\frac{55}{9}
Whakahekea te hautanga \frac{-110}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}