Whakaoti mō x
x = \frac{29}{4} = 7\frac{1}{4} = 7.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times \frac{1}{2}x-3-\left(1+x\right)+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te \frac{1}{2}x-1.
\frac{3}{2}x-3-\left(1+x\right)+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Whakareatia te 3 ki te \frac{1}{2}, ka \frac{3}{2}.
\frac{3}{2}x-3-1-x+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Hei kimi i te tauaro o 1+x, kimihia te tauaro o ia taurangi.
\frac{3}{2}x-4-x+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Tangohia te 1 i te -3, ka -4.
\frac{1}{2}x-4+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Pahekotia te \frac{3}{2}x me -x, ka \frac{1}{2}x.
\frac{1}{2}x-4+\frac{1}{3}\times 2x+\frac{1}{3}\times \frac{1}{2}=\frac{1}{2}x+1
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 2x+\frac{1}{2}.
\frac{1}{2}x-4+\frac{2}{3}x+\frac{1}{3}\times \frac{1}{2}=\frac{1}{2}x+1
Whakareatia te \frac{1}{3} ki te 2, ka \frac{2}{3}.
\frac{1}{2}x-4+\frac{2}{3}x+\frac{1\times 1}{3\times 2}=\frac{1}{2}x+1
Me whakarea te \frac{1}{3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}x-4+\frac{2}{3}x+\frac{1}{6}=\frac{1}{2}x+1
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{3\times 2}.
\frac{7}{6}x-4+\frac{1}{6}=\frac{1}{2}x+1
Pahekotia te \frac{1}{2}x me \frac{2}{3}x, ka \frac{7}{6}x.
\frac{7}{6}x-\frac{24}{6}+\frac{1}{6}=\frac{1}{2}x+1
Me tahuri te -4 ki te hautau -\frac{24}{6}.
\frac{7}{6}x+\frac{-24+1}{6}=\frac{1}{2}x+1
Tā te mea he rite te tauraro o -\frac{24}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{6}x-\frac{23}{6}=\frac{1}{2}x+1
Tāpirihia te -24 ki te 1, ka -23.
\frac{7}{6}x-\frac{23}{6}-\frac{1}{2}x=1
Tangohia te \frac{1}{2}x mai i ngā taha e rua.
\frac{2}{3}x-\frac{23}{6}=1
Pahekotia te \frac{7}{6}x me -\frac{1}{2}x, ka \frac{2}{3}x.
\frac{2}{3}x=1+\frac{23}{6}
Me tāpiri te \frac{23}{6} ki ngā taha e rua.
\frac{2}{3}x=\frac{6}{6}+\frac{23}{6}
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{2}{3}x=\frac{6+23}{6}
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{23}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2}{3}x=\frac{29}{6}
Tāpirihia te 6 ki te 23, ka 29.
x=\frac{29}{6}\times \frac{3}{2}
Me whakarea ngā taha e rua ki te \frac{3}{2}, te tau utu o \frac{2}{3}.
x=\frac{29\times 3}{6\times 2}
Me whakarea te \frac{29}{6} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{87}{12}
Mahia ngā whakarea i roto i te hautanga \frac{29\times 3}{6\times 2}.
x=\frac{29}{4}
Whakahekea te hautanga \frac{87}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}