Whakaoti mō k
k=\frac{\sqrt{5}}{10}\approx 0.223606798
k=-\frac{\sqrt{5}}{10}\approx -0.223606798
Tohaina
Kua tāruatia ki te papatopenga
3\times \left(\frac{-16k}{4k^{2}+1}\right)^{2}\left(4k^{2}+1\right)=32
Whakareatia ngā taha e rua o te whārite ki te 4k^{2}+1.
3\times \frac{\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right)=32
Kia whakarewa i te \frac{-16k}{4k^{2}+1} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{3\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right)=32
Tuhia te 3\times \frac{\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}} hei hautanga kotahi.
\frac{3\left(-16k\right)^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
Tuhia te \frac{3\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right) hei hautanga kotahi.
\frac{3\left(-16\right)^{2}k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
Whakarohaina te \left(-16k\right)^{2}.
\frac{3\times 256k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
Tātaihia te -16 mā te pū o 2, kia riro ko 256.
\frac{768k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
Whakareatia te 3 ki te 256, ka 768.
\frac{768k^{2}\left(4k^{2}+1\right)}{16\left(k^{2}\right)^{2}+8k^{2}+1}=32
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4k^{2}+1\right)^{2}.
\frac{768k^{2}\left(4k^{2}+1\right)}{16k^{4}+8k^{2}+1}=32
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{768k^{2}\left(4k^{2}+1\right)}{16k^{4}+8k^{2}+1}-32=0
Tangohia te 32 mai i ngā taha e rua.
\frac{3072k^{4}+768k^{2}}{16k^{4}+8k^{2}+1}-32=0
Whakamahia te āhuatanga tohatoha hei whakarea te 768k^{2} ki te 4k^{2}+1.
\frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}}-32=0
Tauwehea te 16k^{4}+8k^{2}+1.
\frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}}-\frac{32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 32 ki te \frac{\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}.
\frac{3072k^{4}+768k^{2}-32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}=0
Tā te mea he rite te tauraro o \frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}} me \frac{32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{3072k^{4}+768k^{2}-512k^{4}-256k^{2}-32}{\left(4k^{2}+1\right)^{2}}=0
Mahia ngā whakarea i roto o 3072k^{4}+768k^{2}-32\left(4k^{2}+1\right)^{2}.
\frac{2560k^{4}+512k^{2}-32}{\left(4k^{2}+1\right)^{2}}=0
Whakakotahitia ngā kupu rite i 3072k^{4}+768k^{2}-512k^{4}-256k^{2}-32.
2560k^{4}+512k^{2}-32=0
Whakareatia ngā taha e rua o te whārite ki te \left(4k^{2}+1\right)^{2}.
2560t^{2}+512t-32=0
Whakakapia te t mō te k^{2}.
t=\frac{-512±\sqrt{512^{2}-4\times 2560\left(-32\right)}}{2\times 2560}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2560 mō te a, te 512 mō te b, me te -32 mō te c i te ture pūrua.
t=\frac{-512±768}{5120}
Mahia ngā tātaitai.
t=\frac{1}{20} t=-\frac{1}{4}
Whakaotia te whārite t=\frac{-512±768}{5120} ina he tōrunga te ±, ina he tōraro te ±.
k=\frac{\sqrt{5}}{10} k=-\frac{\sqrt{5}}{10}
I te mea ko k=t^{2}, ka riro ngā otinga mā te arotake i te k=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}