Whakaoti mō x
x=\frac{3\Lambda }{5}
Whakaoti mō Λ
\Lambda =\frac{5x}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\Lambda -3x=2x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te \Lambda -x.
3\Lambda -3x-2x=0
Tangohia te 2x mai i ngā taha e rua.
3\Lambda -5x=0
Pahekotia te -3x me -2x, ka -5x.
-5x=-3\Lambda
Tangohia te 3\Lambda mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-5x}{-5}=-\frac{3\Lambda }{-5}
Whakawehea ngā taha e rua ki te -5.
x=-\frac{3\Lambda }{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x=\frac{3\Lambda }{5}
Whakawehe -3\Lambda ki te -5.
3\Lambda -3x=2x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te \Lambda -x.
3\Lambda =2x+3x
Me tāpiri te 3x ki ngā taha e rua.
3\Lambda =5x
Pahekotia te 2x me 3x, ka 5x.
\frac{3\Lambda }{3}=\frac{5x}{3}
Whakawehea ngā taha e rua ki te 3.
\Lambda =\frac{5x}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}