Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±\frac{5}{3},±5,±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -5, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{3}-17x^{2}+11x-5=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{4}-14x^{3}-6x^{2}+6x-5 ki te x+1, kia riro ko 3x^{3}-17x^{2}+11x-5. Whakaotihia te whārite ina ōrite te hua ki te 0.
±\frac{5}{3},±5,±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -5, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=5
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}-2x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-17x^{2}+11x-5 ki te x-5, kia riro ko 3x^{2}-2x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 1}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te -2 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{2±\sqrt{-8}}{6}
Mahia ngā tātaitai.
x=\frac{-\sqrt{2}i+1}{3} x=\frac{1+\sqrt{2}i}{3}
Whakaotia te whārite 3x^{2}-2x+1=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=5 x=\frac{-\sqrt{2}i+1}{3} x=\frac{1+\sqrt{2}i}{3}
Rārangitia ngā otinga katoa i kitea.
±\frac{5}{3},±5,±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -5, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{3}-17x^{2}+11x-5=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{4}-14x^{3}-6x^{2}+6x-5 ki te x+1, kia riro ko 3x^{3}-17x^{2}+11x-5. Whakaotihia te whārite ina ōrite te hua ki te 0.
±\frac{5}{3},±5,±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -5, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=5
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}-2x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-17x^{2}+11x-5 ki te x-5, kia riro ko 3x^{2}-2x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 1}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te -2 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{2±\sqrt{-8}}{6}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=-1 x=5
Rārangitia ngā otinga katoa i kitea.