Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-9x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 3}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 3}}{2\times 3}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-12\times 3}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-9\right)±\sqrt{81-36}}{2\times 3}
Whakareatia -12 ki te 3.
x=\frac{-\left(-9\right)±\sqrt{45}}{2\times 3}
Tāpiri 81 ki te -36.
x=\frac{-\left(-9\right)±3\sqrt{5}}{2\times 3}
Tuhia te pūtakerua o te 45.
x=\frac{9±3\sqrt{5}}{2\times 3}
Ko te tauaro o -9 ko 9.
x=\frac{9±3\sqrt{5}}{6}
Whakareatia 2 ki te 3.
x=\frac{3\sqrt{5}+9}{6}
Nā, me whakaoti te whārite x=\frac{9±3\sqrt{5}}{6} ina he tāpiri te ±. Tāpiri 9 ki te 3\sqrt{5}.
x=\frac{\sqrt{5}+3}{2}
Whakawehe 9+3\sqrt{5} ki te 6.
x=\frac{9-3\sqrt{5}}{6}
Nā, me whakaoti te whārite x=\frac{9±3\sqrt{5}}{6} ina he tango te ±. Tango 3\sqrt{5} mai i 9.
x=\frac{3-\sqrt{5}}{2}
Whakawehe 9-3\sqrt{5} ki te 6.
3x^{2}-9x+3=3\left(x-\frac{\sqrt{5}+3}{2}\right)\left(x-\frac{3-\sqrt{5}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3+\sqrt{5}}{2} mō te x_{1} me te \frac{3-\sqrt{5}}{2} mō te x_{2}.