Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-8 ab=3\left(-3\right)=-9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-9 3,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -9.
1-9=-8 3-3=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=1
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(3x^{2}-9x\right)+\left(x-3\right)
Tuhia anō te 3x^{2}-8x-3 hei \left(3x^{2}-9x\right)+\left(x-3\right).
3x\left(x-3\right)+x-3
Whakatauwehea atu 3x i te 3x^{2}-9x.
\left(x-3\right)\left(3x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te x-3=0 me te 3x+1=0.
3x^{2}-8x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3\left(-3\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -8 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 3\left(-3\right)}}{2\times 3}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-12\left(-3\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-8\right)±\sqrt{64+36}}{2\times 3}
Whakareatia -12 ki te -3.
x=\frac{-\left(-8\right)±\sqrt{100}}{2\times 3}
Tāpiri 64 ki te 36.
x=\frac{-\left(-8\right)±10}{2\times 3}
Tuhia te pūtakerua o te 100.
x=\frac{8±10}{2\times 3}
Ko te tauaro o -8 ko 8.
x=\frac{8±10}{6}
Whakareatia 2 ki te 3.
x=\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{8±10}{6} ina he tāpiri te ±. Tāpiri 8 ki te 10.
x=3
Whakawehe 18 ki te 6.
x=-\frac{2}{6}
Nā, me whakaoti te whārite x=\frac{8±10}{6} ina he tango te ±. Tango 10 mai i 8.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=-\frac{1}{3}
Kua oti te whārite te whakatau.
3x^{2}-8x-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-8x-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
3x^{2}-8x=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
3x^{2}-8x=3
Tango -3 mai i 0.
\frac{3x^{2}-8x}{3}=\frac{3}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{8}{3}x=\frac{3}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{8}{3}x=1
Whakawehe 3 ki te 3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=1+\left(-\frac{4}{3}\right)^{2}
Whakawehea te -\frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{3}. Nā, tāpiria te pūrua o te -\frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{3}x+\frac{16}{9}=1+\frac{16}{9}
Pūruatia -\frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{25}{9}
Tāpiri 1 ki te \frac{16}{9}.
\left(x-\frac{4}{3}\right)^{2}=\frac{25}{9}
Tauwehea x^{2}-\frac{8}{3}x+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{3}=\frac{5}{3} x-\frac{4}{3}=-\frac{5}{3}
Whakarūnātia.
x=3 x=-\frac{1}{3}
Me tāpiri \frac{4}{3} ki ngā taha e rua o te whārite.