Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-7x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -7 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\left(-1\right)}}{2\times 3}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-12\left(-1\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-7\right)±\sqrt{49+12}}{2\times 3}
Whakareatia -12 ki te -1.
x=\frac{-\left(-7\right)±\sqrt{61}}{2\times 3}
Tāpiri 49 ki te 12.
x=\frac{7±\sqrt{61}}{2\times 3}
Ko te tauaro o -7 ko 7.
x=\frac{7±\sqrt{61}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{61}+7}{6}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{61}}{6} ina he tāpiri te ±. Tāpiri 7 ki te \sqrt{61}.
x=\frac{7-\sqrt{61}}{6}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{61}}{6} ina he tango te ±. Tango \sqrt{61} mai i 7.
x=\frac{\sqrt{61}+7}{6} x=\frac{7-\sqrt{61}}{6}
Kua oti te whārite te whakatau.
3x^{2}-7x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-7x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
3x^{2}-7x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
3x^{2}-7x=1
Tango -1 mai i 0.
\frac{3x^{2}-7x}{3}=\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{7}{3}x=\frac{1}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=\frac{1}{3}+\left(-\frac{7}{6}\right)^{2}
Whakawehea te -\frac{7}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{6}. Nā, tāpiria te pūrua o te -\frac{7}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{1}{3}+\frac{49}{36}
Pūruatia -\frac{7}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{61}{36}
Tāpiri \frac{1}{3} ki te \frac{49}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{6}\right)^{2}=\frac{61}{36}
Tauwehea x^{2}-\frac{7}{3}x+\frac{49}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{61}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{6}=\frac{\sqrt{61}}{6} x-\frac{7}{6}=-\frac{\sqrt{61}}{6}
Whakarūnātia.
x=\frac{\sqrt{61}+7}{6} x=\frac{7-\sqrt{61}}{6}
Me tāpiri \frac{7}{6} ki ngā taha e rua o te whārite.