Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-6x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\times 6}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -6 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\times 6}}{2\times 3}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\times 6}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-6\right)±\sqrt{36-72}}{2\times 3}
Whakareatia -12 ki te 6.
x=\frac{-\left(-6\right)±\sqrt{-36}}{2\times 3}
Tāpiri 36 ki te -72.
x=\frac{-\left(-6\right)±6i}{2\times 3}
Tuhia te pūtakerua o te -36.
x=\frac{6±6i}{2\times 3}
Ko te tauaro o -6 ko 6.
x=\frac{6±6i}{6}
Whakareatia 2 ki te 3.
x=\frac{6+6i}{6}
Nā, me whakaoti te whārite x=\frac{6±6i}{6} ina he tāpiri te ±. Tāpiri 6 ki te 6i.
x=1+i
Whakawehe 6+6i ki te 6.
x=\frac{6-6i}{6}
Nā, me whakaoti te whārite x=\frac{6±6i}{6} ina he tango te ±. Tango 6i mai i 6.
x=1-i
Whakawehe 6-6i ki te 6.
x=1+i x=1-i
Kua oti te whārite te whakatau.
3x^{2}-6x+6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-6x+6-6=-6
Me tango 6 mai i ngā taha e rua o te whārite.
3x^{2}-6x=-6
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
\frac{3x^{2}-6x}{3}=-\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{6}{3}\right)x=-\frac{6}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-2x=-\frac{6}{3}
Whakawehe -6 ki te 3.
x^{2}-2x=-2
Whakawehe -6 ki te 3.
x^{2}-2x+1=-2+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=-1
Tāpiri -2 ki te 1.
\left(x-1\right)^{2}=-1
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=i x-1=-i
Whakarūnātia.
x=1+i x=1-i
Me tāpiri 1 ki ngā taha e rua o te whārite.