Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-6=x^{2}-x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
3x^{2}-6-x^{2}=-x-6
Tangohia te x^{2} mai i ngā taha e rua.
2x^{2}-6=-x-6
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
2x^{2}-6+x=-6
Me tāpiri te x ki ngā taha e rua.
2x^{2}-6+x+6=0
Me tāpiri te 6 ki ngā taha e rua.
2x^{2}+x=0
Tāpirihia te -6 ki te 6, ka 0.
x\left(2x+1\right)=0
Tauwehea te x.
x=0 x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te 2x+1=0.
3x^{2}-6=x^{2}-x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
3x^{2}-6-x^{2}=-x-6
Tangohia te x^{2} mai i ngā taha e rua.
2x^{2}-6=-x-6
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
2x^{2}-6+x=-6
Me tāpiri te x ki ngā taha e rua.
2x^{2}-6+x+6=0
Me tāpiri te 6 ki ngā taha e rua.
2x^{2}+x=0
Tāpirihia te -6 ki te 6, ka 0.
x=\frac{-1±\sqrt{1^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\times 2}
Tuhia te pūtakerua o te 1^{2}.
x=\frac{-1±1}{4}
Whakareatia 2 ki te 2.
x=\frac{0}{4}
Nā, me whakaoti te whārite x=\frac{-1±1}{4} ina he tāpiri te ±. Tāpiri -1 ki te 1.
x=0
Whakawehe 0 ki te 4.
x=-\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{-1±1}{4} ina he tango te ±. Tango 1 mai i -1.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=0 x=-\frac{1}{2}
Kua oti te whārite te whakatau.
3x^{2}-6=x^{2}-x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x-3 ka whakakotahi i ngā kupu rite.
3x^{2}-6-x^{2}=-x-6
Tangohia te x^{2} mai i ngā taha e rua.
2x^{2}-6=-x-6
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
2x^{2}-6+x=-6
Me tāpiri te x ki ngā taha e rua.
2x^{2}+x=-6+6
Me tāpiri te 6 ki ngā taha e rua.
2x^{2}+x=0
Tāpirihia te -6 ki te 6, ka 0.
\frac{2x^{2}+x}{2}=\frac{0}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{1}{2}x=\frac{0}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{1}{2}x=0
Whakawehe 0 ki te 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Whakarūnātia.
x=0 x=-\frac{1}{2}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.