Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-50x-26=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 3\left(-26\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 3\left(-26\right)}}{2\times 3}
Pūrua -50.
x=\frac{-\left(-50\right)±\sqrt{2500-12\left(-26\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-50\right)±\sqrt{2500+312}}{2\times 3}
Whakareatia -12 ki te -26.
x=\frac{-\left(-50\right)±\sqrt{2812}}{2\times 3}
Tāpiri 2500 ki te 312.
x=\frac{-\left(-50\right)±2\sqrt{703}}{2\times 3}
Tuhia te pūtakerua o te 2812.
x=\frac{50±2\sqrt{703}}{2\times 3}
Ko te tauaro o -50 ko 50.
x=\frac{50±2\sqrt{703}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{703}+50}{6}
Nā, me whakaoti te whārite x=\frac{50±2\sqrt{703}}{6} ina he tāpiri te ±. Tāpiri 50 ki te 2\sqrt{703}.
x=\frac{\sqrt{703}+25}{3}
Whakawehe 50+2\sqrt{703} ki te 6.
x=\frac{50-2\sqrt{703}}{6}
Nā, me whakaoti te whārite x=\frac{50±2\sqrt{703}}{6} ina he tango te ±. Tango 2\sqrt{703} mai i 50.
x=\frac{25-\sqrt{703}}{3}
Whakawehe 50-2\sqrt{703} ki te 6.
3x^{2}-50x-26=3\left(x-\frac{\sqrt{703}+25}{3}\right)\left(x-\frac{25-\sqrt{703}}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{25+\sqrt{703}}{3} mō te x_{1} me te \frac{25-\sqrt{703}}{3} mō te x_{2}.