Whakaoti mō x
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
x=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-31 ab=3\left(-60\right)=-180
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-60. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Tātaihia te tapeke mō ia takirua.
a=-36 b=5
Ko te otinga te takirua ka hoatu i te tapeke -31.
\left(3x^{2}-36x\right)+\left(5x-60\right)
Tuhia anō te 3x^{2}-31x-60 hei \left(3x^{2}-36x\right)+\left(5x-60\right).
3x\left(x-12\right)+5\left(x-12\right)
Tauwehea te 3x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-12\right)\left(3x+5\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=-\frac{5}{3}
Hei kimi otinga whārite, me whakaoti te x-12=0 me te 3x+5=0.
3x^{2}-31x-60=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\times 3\left(-60\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -31 mō b, me -60 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-31\right)±\sqrt{961-4\times 3\left(-60\right)}}{2\times 3}
Pūrua -31.
x=\frac{-\left(-31\right)±\sqrt{961-12\left(-60\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-31\right)±\sqrt{961+720}}{2\times 3}
Whakareatia -12 ki te -60.
x=\frac{-\left(-31\right)±\sqrt{1681}}{2\times 3}
Tāpiri 961 ki te 720.
x=\frac{-\left(-31\right)±41}{2\times 3}
Tuhia te pūtakerua o te 1681.
x=\frac{31±41}{2\times 3}
Ko te tauaro o -31 ko 31.
x=\frac{31±41}{6}
Whakareatia 2 ki te 3.
x=\frac{72}{6}
Nā, me whakaoti te whārite x=\frac{31±41}{6} ina he tāpiri te ±. Tāpiri 31 ki te 41.
x=12
Whakawehe 72 ki te 6.
x=-\frac{10}{6}
Nā, me whakaoti te whārite x=\frac{31±41}{6} ina he tango te ±. Tango 41 mai i 31.
x=-\frac{5}{3}
Whakahekea te hautanga \frac{-10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=12 x=-\frac{5}{3}
Kua oti te whārite te whakatau.
3x^{2}-31x-60=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-31x-60-\left(-60\right)=-\left(-60\right)
Me tāpiri 60 ki ngā taha e rua o te whārite.
3x^{2}-31x=-\left(-60\right)
Mā te tango i te -60 i a ia ake anō ka toe ko te 0.
3x^{2}-31x=60
Tango -60 mai i 0.
\frac{3x^{2}-31x}{3}=\frac{60}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{31}{3}x=\frac{60}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{31}{3}x=20
Whakawehe 60 ki te 3.
x^{2}-\frac{31}{3}x+\left(-\frac{31}{6}\right)^{2}=20+\left(-\frac{31}{6}\right)^{2}
Whakawehea te -\frac{31}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{31}{6}. Nā, tāpiria te pūrua o te -\frac{31}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{31}{3}x+\frac{961}{36}=20+\frac{961}{36}
Pūruatia -\frac{31}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{31}{3}x+\frac{961}{36}=\frac{1681}{36}
Tāpiri 20 ki te \frac{961}{36}.
\left(x-\frac{31}{6}\right)^{2}=\frac{1681}{36}
Tauwehea x^{2}-\frac{31}{3}x+\frac{961}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{31}{6}\right)^{2}}=\sqrt{\frac{1681}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{31}{6}=\frac{41}{6} x-\frac{31}{6}=-\frac{41}{6}
Whakarūnātia.
x=12 x=-\frac{5}{3}
Me tāpiri \frac{31}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}