Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-19x+6=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 3\times 6}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te -19 mō te b, me te 6 mō te c i te ture pūrua.
x=\frac{19±17}{6}
Mahia ngā tātaitai.
x=6 x=\frac{1}{3}
Whakaotia te whārite x=\frac{19±17}{6} ina he tōrunga te ±, ina he tōraro te ±.
3\left(x-6\right)\left(x-\frac{1}{3}\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-6>0 x-\frac{1}{3}<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-6 me te x-\frac{1}{3}. Whakaarohia te tauira ina he tōrunga te x-6 he tōraro te x-\frac{1}{3}.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\frac{1}{3}>0 x-6<0
Whakaarohia te tauira ina he tōrunga te x-\frac{1}{3} he tōraro te x-6.
x\in \left(\frac{1}{3},6\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(\frac{1}{3},6\right).
x\in \left(\frac{1}{3},6\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.