Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-10 ab=3\left(-8\right)=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-24 2,-12 3,-8 4,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Tātaihia te tapeke mō ia takirua.
a=-12 b=2
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(3x^{2}-12x\right)+\left(2x-8\right)
Tuhia anō te 3x^{2}-10x-8 hei \left(3x^{2}-12x\right)+\left(2x-8\right).
3x\left(x-4\right)+2\left(x-4\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-4\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te x-4=0 me te 3x+2=0.
3x^{2}-10x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -10 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-8\right)}}{2\times 3}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-12\left(-8\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2\times 3}
Whakareatia -12 ki te -8.
x=\frac{-\left(-10\right)±\sqrt{196}}{2\times 3}
Tāpiri 100 ki te 96.
x=\frac{-\left(-10\right)±14}{2\times 3}
Tuhia te pūtakerua o te 196.
x=\frac{10±14}{2\times 3}
Ko te tauaro o -10 ko 10.
x=\frac{10±14}{6}
Whakareatia 2 ki te 3.
x=\frac{24}{6}
Nā, me whakaoti te whārite x=\frac{10±14}{6} ina he tāpiri te ±. Tāpiri 10 ki te 14.
x=4
Whakawehe 24 ki te 6.
x=-\frac{4}{6}
Nā, me whakaoti te whārite x=\frac{10±14}{6} ina he tango te ±. Tango 14 mai i 10.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=4 x=-\frac{2}{3}
Kua oti te whārite te whakatau.
3x^{2}-10x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-10x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
3x^{2}-10x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
3x^{2}-10x=8
Tango -8 mai i 0.
\frac{3x^{2}-10x}{3}=\frac{8}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{10}{3}x=\frac{8}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
Whakawehea te -\frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{3}. Nā, tāpiria te pūrua o te -\frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
Pūruatia -\frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{49}{9}
Tāpiri \frac{8}{3} ki te \frac{25}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{3}\right)^{2}=\frac{49}{9}
Tauwehea x^{2}-\frac{10}{3}x+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{3}=\frac{7}{3} x-\frac{5}{3}=-\frac{7}{3}
Whakarūnātia.
x=4 x=-\frac{2}{3}
Me tāpiri \frac{5}{3} ki ngā taha e rua o te whārite.