Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-10 ab=3\left(-8\right)=-24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-24 2,-12 3,-8 4,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Tātaihia te tapeke mō ia takirua.
a=-12 b=2
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(3x^{2}-12x\right)+\left(2x-8\right)
Tuhia anō te 3x^{2}-10x-8 hei \left(3x^{2}-12x\right)+\left(2x-8\right).
3x\left(x-4\right)+2\left(x-4\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-4\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
3x^{2}-10x-8=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-8\right)}}{2\times 3}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-12\left(-8\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2\times 3}
Whakareatia -12 ki te -8.
x=\frac{-\left(-10\right)±\sqrt{196}}{2\times 3}
Tāpiri 100 ki te 96.
x=\frac{-\left(-10\right)±14}{2\times 3}
Tuhia te pūtakerua o te 196.
x=\frac{10±14}{2\times 3}
Ko te tauaro o -10 ko 10.
x=\frac{10±14}{6}
Whakareatia 2 ki te 3.
x=\frac{24}{6}
Nā, me whakaoti te whārite x=\frac{10±14}{6} ina he tāpiri te ±. Tāpiri 10 ki te 14.
x=4
Whakawehe 24 ki te 6.
x=-\frac{4}{6}
Nā, me whakaoti te whārite x=\frac{10±14}{6} ina he tango te ±. Tango 14 mai i 10.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3x^{2}-10x-8=3\left(x-4\right)\left(x-\left(-\frac{2}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te -\frac{2}{3} mō te x_{2}.
3x^{2}-10x-8=3\left(x-4\right)\left(x+\frac{2}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3x^{2}-10x-8=3\left(x-4\right)\times \frac{3x+2}{3}
Tāpiri \frac{2}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3x^{2}-10x-8=\left(x-4\right)\left(3x+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.