Whakaoti mō x
x = \frac{2 \sqrt{55} - 4}{3} \approx 3.610798991
x=\frac{-2\sqrt{55}-4}{3}\approx -6.277465658
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+8x-3=65
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}+8x-3-65=65-65
Me tango 65 mai i ngā taha e rua o te whārite.
3x^{2}+8x-3-65=0
Mā te tango i te 65 i a ia ake anō ka toe ko te 0.
3x^{2}+8x-68=0
Tango 65 mai i -3.
x=\frac{-8±\sqrt{8^{2}-4\times 3\left(-68\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 8 mō b, me -68 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 3\left(-68\right)}}{2\times 3}
Pūrua 8.
x=\frac{-8±\sqrt{64-12\left(-68\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-8±\sqrt{64+816}}{2\times 3}
Whakareatia -12 ki te -68.
x=\frac{-8±\sqrt{880}}{2\times 3}
Tāpiri 64 ki te 816.
x=\frac{-8±4\sqrt{55}}{2\times 3}
Tuhia te pūtakerua o te 880.
x=\frac{-8±4\sqrt{55}}{6}
Whakareatia 2 ki te 3.
x=\frac{4\sqrt{55}-8}{6}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{55}}{6} ina he tāpiri te ±. Tāpiri -8 ki te 4\sqrt{55}.
x=\frac{2\sqrt{55}-4}{3}
Whakawehe -8+4\sqrt{55} ki te 6.
x=\frac{-4\sqrt{55}-8}{6}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{55}}{6} ina he tango te ±. Tango 4\sqrt{55} mai i -8.
x=\frac{-2\sqrt{55}-4}{3}
Whakawehe -8-4\sqrt{55} ki te 6.
x=\frac{2\sqrt{55}-4}{3} x=\frac{-2\sqrt{55}-4}{3}
Kua oti te whārite te whakatau.
3x^{2}+8x-3=65
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+8x-3-\left(-3\right)=65-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
3x^{2}+8x=65-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
3x^{2}+8x=68
Tango -3 mai i 65.
\frac{3x^{2}+8x}{3}=\frac{68}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{8}{3}x=\frac{68}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\frac{68}{3}+\left(\frac{4}{3}\right)^{2}
Whakawehea te \frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{4}{3}. Nā, tāpiria te pūrua o te \frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{68}{3}+\frac{16}{9}
Pūruatia \frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{220}{9}
Tāpiri \frac{68}{3} ki te \frac{16}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{4}{3}\right)^{2}=\frac{220}{9}
Tauwehea x^{2}+\frac{8}{3}x+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{220}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{4}{3}=\frac{2\sqrt{55}}{3} x+\frac{4}{3}=-\frac{2\sqrt{55}}{3}
Whakarūnātia.
x=\frac{2\sqrt{55}-4}{3} x=\frac{-2\sqrt{55}-4}{3}
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}