Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+6x-25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-25\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 6 mō b, me -25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 3\left(-25\right)}}{2\times 3}
Pūrua 6.
x=\frac{-6±\sqrt{36-12\left(-25\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-6±\sqrt{36+300}}{2\times 3}
Whakareatia -12 ki te -25.
x=\frac{-6±\sqrt{336}}{2\times 3}
Tāpiri 36 ki te 300.
x=\frac{-6±4\sqrt{21}}{2\times 3}
Tuhia te pūtakerua o te 336.
x=\frac{-6±4\sqrt{21}}{6}
Whakareatia 2 ki te 3.
x=\frac{4\sqrt{21}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{21}}{6} ina he tāpiri te ±. Tāpiri -6 ki te 4\sqrt{21}.
x=\frac{2\sqrt{21}}{3}-1
Whakawehe -6+4\sqrt{21} ki te 6.
x=\frac{-4\sqrt{21}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{21}}{6} ina he tango te ±. Tango 4\sqrt{21} mai i -6.
x=-\frac{2\sqrt{21}}{3}-1
Whakawehe -6-4\sqrt{21} ki te 6.
x=\frac{2\sqrt{21}}{3}-1 x=-\frac{2\sqrt{21}}{3}-1
Kua oti te whārite te whakatau.
3x^{2}+6x-25=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+6x-25-\left(-25\right)=-\left(-25\right)
Me tāpiri 25 ki ngā taha e rua o te whārite.
3x^{2}+6x=-\left(-25\right)
Mā te tango i te -25 i a ia ake anō ka toe ko te 0.
3x^{2}+6x=25
Tango -25 mai i 0.
\frac{3x^{2}+6x}{3}=\frac{25}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{6}{3}x=\frac{25}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+2x=\frac{25}{3}
Whakawehe 6 ki te 3.
x^{2}+2x+1^{2}=\frac{25}{3}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=\frac{25}{3}+1
Pūrua 1.
x^{2}+2x+1=\frac{28}{3}
Tāpiri \frac{25}{3} ki te 1.
\left(x+1\right)^{2}=\frac{28}{3}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{28}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{2\sqrt{21}}{3} x+1=-\frac{2\sqrt{21}}{3}
Whakarūnātia.
x=\frac{2\sqrt{21}}{3}-1 x=-\frac{2\sqrt{21}}{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.