Whakaoti mō x
x = \frac{\sqrt{1969} - 35}{6} \approx 1.562235911
x=\frac{-\sqrt{1969}-35}{6}\approx -13.228902577
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+35x+1=63
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}+35x+1-63=63-63
Me tango 63 mai i ngā taha e rua o te whārite.
3x^{2}+35x+1-63=0
Mā te tango i te 63 i a ia ake anō ka toe ko te 0.
3x^{2}+35x-62=0
Tango 63 mai i 1.
x=\frac{-35±\sqrt{35^{2}-4\times 3\left(-62\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 35 mō b, me -62 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\times 3\left(-62\right)}}{2\times 3}
Pūrua 35.
x=\frac{-35±\sqrt{1225-12\left(-62\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-35±\sqrt{1225+744}}{2\times 3}
Whakareatia -12 ki te -62.
x=\frac{-35±\sqrt{1969}}{2\times 3}
Tāpiri 1225 ki te 744.
x=\frac{-35±\sqrt{1969}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{1969}-35}{6}
Nā, me whakaoti te whārite x=\frac{-35±\sqrt{1969}}{6} ina he tāpiri te ±. Tāpiri -35 ki te \sqrt{1969}.
x=\frac{-\sqrt{1969}-35}{6}
Nā, me whakaoti te whārite x=\frac{-35±\sqrt{1969}}{6} ina he tango te ±. Tango \sqrt{1969} mai i -35.
x=\frac{\sqrt{1969}-35}{6} x=\frac{-\sqrt{1969}-35}{6}
Kua oti te whārite te whakatau.
3x^{2}+35x+1=63
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+35x+1-1=63-1
Me tango 1 mai i ngā taha e rua o te whārite.
3x^{2}+35x=63-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
3x^{2}+35x=62
Tango 1 mai i 63.
\frac{3x^{2}+35x}{3}=\frac{62}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{35}{3}x=\frac{62}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{35}{3}x+\left(\frac{35}{6}\right)^{2}=\frac{62}{3}+\left(\frac{35}{6}\right)^{2}
Whakawehea te \frac{35}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{35}{6}. Nā, tāpiria te pūrua o te \frac{35}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{35}{3}x+\frac{1225}{36}=\frac{62}{3}+\frac{1225}{36}
Pūruatia \frac{35}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{35}{3}x+\frac{1225}{36}=\frac{1969}{36}
Tāpiri \frac{62}{3} ki te \frac{1225}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{35}{6}\right)^{2}=\frac{1969}{36}
Tauwehea x^{2}+\frac{35}{3}x+\frac{1225}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{35}{6}\right)^{2}}=\sqrt{\frac{1969}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{35}{6}=\frac{\sqrt{1969}}{6} x+\frac{35}{6}=-\frac{\sqrt{1969}}{6}
Whakarūnātia.
x=\frac{\sqrt{1969}-35}{6} x=\frac{-\sqrt{1969}-35}{6}
Me tango \frac{35}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}