Whakaoti mō x (complex solution)
x=\frac{-1+\sqrt{17}i}{3}\approx -0.333333333+1.374368542i
x=\frac{-\sqrt{17}i-1}{3}\approx -0.333333333-1.374368542i
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+2x+15=9
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}+2x+15-9=9-9
Me tango 9 mai i ngā taha e rua o te whārite.
3x^{2}+2x+15-9=0
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
3x^{2}+2x+6=0
Tango 9 mai i 15.
x=\frac{-2±\sqrt{2^{2}-4\times 3\times 6}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 2 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3\times 6}}{2\times 3}
Pūrua 2.
x=\frac{-2±\sqrt{4-12\times 6}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-2±\sqrt{4-72}}{2\times 3}
Whakareatia -12 ki te 6.
x=\frac{-2±\sqrt{-68}}{2\times 3}
Tāpiri 4 ki te -72.
x=\frac{-2±2\sqrt{17}i}{2\times 3}
Tuhia te pūtakerua o te -68.
x=\frac{-2±2\sqrt{17}i}{6}
Whakareatia 2 ki te 3.
x=\frac{-2+2\sqrt{17}i}{6}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{17}i}{6} ina he tāpiri te ±. Tāpiri -2 ki te 2i\sqrt{17}.
x=\frac{-1+\sqrt{17}i}{3}
Whakawehe -2+2i\sqrt{17} ki te 6.
x=\frac{-2\sqrt{17}i-2}{6}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{17}i}{6} ina he tango te ±. Tango 2i\sqrt{17} mai i -2.
x=\frac{-\sqrt{17}i-1}{3}
Whakawehe -2-2i\sqrt{17} ki te 6.
x=\frac{-1+\sqrt{17}i}{3} x=\frac{-\sqrt{17}i-1}{3}
Kua oti te whārite te whakatau.
3x^{2}+2x+15=9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+2x+15-15=9-15
Me tango 15 mai i ngā taha e rua o te whārite.
3x^{2}+2x=9-15
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
3x^{2}+2x=-6
Tango 15 mai i 9.
\frac{3x^{2}+2x}{3}=-\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{2}{3}x=-\frac{6}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{2}{3}x=-2
Whakawehe -6 ki te 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-2+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-2+\frac{1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{17}{9}
Tāpiri -2 ki te \frac{1}{9}.
\left(x+\frac{1}{3}\right)^{2}=-\frac{17}{9}
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{-\frac{17}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=\frac{\sqrt{17}i}{3} x+\frac{1}{3}=-\frac{\sqrt{17}i}{3}
Whakarūnātia.
x=\frac{-1+\sqrt{17}i}{3} x=\frac{-\sqrt{17}i-1}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}