Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=-\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{\sqrt{6}i}{3} x=-\frac{\sqrt{6}i}{3}
Kua oti te whārite te whakatau.
3x^{2}+2=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 2}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\times 2}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\times 2}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{-24}}{2\times 3}
Whakareatia -12 ki te 2.
x=\frac{0±2\sqrt{6}i}{2\times 3}
Tuhia te pūtakerua o te -24.
x=\frac{0±2\sqrt{6}i}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{6}i}{3}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{6}i}{6} ina he tāpiri te ±.
x=-\frac{\sqrt{6}i}{3}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{6}i}{6} ina he tango te ±.
x=\frac{\sqrt{6}i}{3} x=-\frac{\sqrt{6}i}{3}
Kua oti te whārite te whakatau.