Whakaoti mō n
n = -\frac{46}{3} = -15\frac{1}{3} \approx -15.333333333
n=19
Tohaina
Kua tāruatia ki te papatopenga
a+b=-11 ab=3\left(-874\right)=-2622
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3n^{2}+an+bn-874. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-2622 2,-1311 3,-874 6,-437 19,-138 23,-114 38,-69 46,-57
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -2622.
1-2622=-2621 2-1311=-1309 3-874=-871 6-437=-431 19-138=-119 23-114=-91 38-69=-31 46-57=-11
Tātaihia te tapeke mō ia takirua.
a=-57 b=46
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(3n^{2}-57n\right)+\left(46n-874\right)
Tuhia anō te 3n^{2}-11n-874 hei \left(3n^{2}-57n\right)+\left(46n-874\right).
3n\left(n-19\right)+46\left(n-19\right)
Tauwehea te 3n i te tuatahi me te 46 i te rōpū tuarua.
\left(n-19\right)\left(3n+46\right)
Whakatauwehea atu te kīanga pātahi n-19 mā te whakamahi i te āhuatanga tātai tohatoha.
n=19 n=-\frac{46}{3}
Hei kimi otinga whārite, me whakaoti te n-19=0 me te 3n+46=0.
3n^{2}-11n-874=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\left(-874\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -11 mō b, me -874 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-11\right)±\sqrt{121-4\times 3\left(-874\right)}}{2\times 3}
Pūrua -11.
n=\frac{-\left(-11\right)±\sqrt{121-12\left(-874\right)}}{2\times 3}
Whakareatia -4 ki te 3.
n=\frac{-\left(-11\right)±\sqrt{121+10488}}{2\times 3}
Whakareatia -12 ki te -874.
n=\frac{-\left(-11\right)±\sqrt{10609}}{2\times 3}
Tāpiri 121 ki te 10488.
n=\frac{-\left(-11\right)±103}{2\times 3}
Tuhia te pūtakerua o te 10609.
n=\frac{11±103}{2\times 3}
Ko te tauaro o -11 ko 11.
n=\frac{11±103}{6}
Whakareatia 2 ki te 3.
n=\frac{114}{6}
Nā, me whakaoti te whārite n=\frac{11±103}{6} ina he tāpiri te ±. Tāpiri 11 ki te 103.
n=19
Whakawehe 114 ki te 6.
n=-\frac{92}{6}
Nā, me whakaoti te whārite n=\frac{11±103}{6} ina he tango te ±. Tango 103 mai i 11.
n=-\frac{46}{3}
Whakahekea te hautanga \frac{-92}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n=19 n=-\frac{46}{3}
Kua oti te whārite te whakatau.
3n^{2}-11n-874=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3n^{2}-11n-874-\left(-874\right)=-\left(-874\right)
Me tāpiri 874 ki ngā taha e rua o te whārite.
3n^{2}-11n=-\left(-874\right)
Mā te tango i te -874 i a ia ake anō ka toe ko te 0.
3n^{2}-11n=874
Tango -874 mai i 0.
\frac{3n^{2}-11n}{3}=\frac{874}{3}
Whakawehea ngā taha e rua ki te 3.
n^{2}-\frac{11}{3}n=\frac{874}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
n^{2}-\frac{11}{3}n+\left(-\frac{11}{6}\right)^{2}=\frac{874}{3}+\left(-\frac{11}{6}\right)^{2}
Whakawehea te -\frac{11}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{6}. Nā, tāpiria te pūrua o te -\frac{11}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-\frac{11}{3}n+\frac{121}{36}=\frac{874}{3}+\frac{121}{36}
Pūruatia -\frac{11}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-\frac{11}{3}n+\frac{121}{36}=\frac{10609}{36}
Tāpiri \frac{874}{3} ki te \frac{121}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n-\frac{11}{6}\right)^{2}=\frac{10609}{36}
Tauwehea n^{2}-\frac{11}{3}n+\frac{121}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{11}{6}\right)^{2}}=\sqrt{\frac{10609}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{11}{6}=\frac{103}{6} n-\frac{11}{6}=-\frac{103}{6}
Whakarūnātia.
n=19 n=-\frac{46}{3}
Me tāpiri \frac{11}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}