3 { a }^{ 2 } +8 { a }^{ } +5
Tauwehe
\left(a+1\right)\left(3a+5\right)
Aromātai
\left(a+1\right)\left(3a+5\right)
Pātaitai
3 { a }^{ 2 } +8 { a }^{ } +5
Tohaina
Kua tāruatia ki te papatopenga
3a^{2}+8a+5
Whakarea ka paheko i ngā kīanga tau ōrite.
p+q=8 pq=3\times 5=15
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3a^{2}+pa+qa+5. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,15 3,5
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōrunga te p+q, he tōrunga hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
1+15=16 3+5=8
Tātaihia te tapeke mō ia takirua.
p=3 q=5
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(3a^{2}+3a\right)+\left(5a+5\right)
Tuhia anō te 3a^{2}+8a+5 hei \left(3a^{2}+3a\right)+\left(5a+5\right).
3a\left(a+1\right)+5\left(a+1\right)
Tauwehea te 3a i te tuatahi me te 5 i te rōpū tuarua.
\left(a+1\right)\left(3a+5\right)
Whakatauwehea atu te kīanga pātahi a+1 mā te whakamahi i te āhuatanga tātai tohatoha.
3a^{2}+8a+5
Tātaihia te a mā te pū o 1, kia riro ko a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}