Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(x-2\right)^{2}-2+2=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
3\left(x-2\right)^{2}=2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{3\left(x-2\right)^{2}}{3}=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
\left(x-2\right)^{2}=\frac{2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x-2=\frac{\sqrt{6}}{3} x-2=-\frac{\sqrt{6}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2-\left(-2\right)=\frac{\sqrt{6}}{3}-\left(-2\right) x-2-\left(-2\right)=-\frac{\sqrt{6}}{3}-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=\frac{\sqrt{6}}{3}-\left(-2\right) x=-\frac{\sqrt{6}}{3}-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
x=\frac{\sqrt{6}}{3}+2
Tango -2 mai i \frac{\sqrt{6}}{3}.
x=-\frac{\sqrt{6}}{3}+2
Tango -2 mai i -\frac{\sqrt{6}}{3}.
x=\frac{\sqrt{6}}{3}+2 x=-\frac{\sqrt{6}}{3}+2
Kua oti te whārite te whakatau.