Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+1\right)^{2}=\frac{75}{3}
Whakawehea ngā taha e rua ki te 3.
\left(x+1\right)^{2}=25
Whakawehea te 75 ki te 3, kia riro ko 25.
x^{2}+2x+1=25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1-25=0
Tangohia te 25 mai i ngā taha e rua.
x^{2}+2x-24=0
Tangohia te 25 i te 1, ka -24.
a+b=2 ab=-24
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-24 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=-4 b=6
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x-4\right)\left(x+6\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=-6
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+6=0.
\left(x+1\right)^{2}=\frac{75}{3}
Whakawehea ngā taha e rua ki te 3.
\left(x+1\right)^{2}=25
Whakawehea te 75 ki te 3, kia riro ko 25.
x^{2}+2x+1=25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1-25=0
Tangohia te 25 mai i ngā taha e rua.
x^{2}+2x-24=0
Tangohia te 25 i te 1, ka -24.
a+b=2 ab=1\left(-24\right)=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=-4 b=6
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-4x\right)+\left(6x-24\right)
Tuhia anō te x^{2}+2x-24 hei \left(x^{2}-4x\right)+\left(6x-24\right).
x\left(x-4\right)+6\left(x-4\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(x-4\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-6
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+6=0.
\left(x+1\right)^{2}=\frac{75}{3}
Whakawehea ngā taha e rua ki te 3.
\left(x+1\right)^{2}=25
Whakawehea te 75 ki te 3, kia riro ko 25.
x^{2}+2x+1=25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1-25=0
Tangohia te 25 mai i ngā taha e rua.
x^{2}+2x-24=0
Tangohia te 25 i te 1, ka -24.
x=\frac{-2±\sqrt{2^{2}-4\left(-24\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-24\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+96}}{2}
Whakareatia -4 ki te -24.
x=\frac{-2±\sqrt{100}}{2}
Tāpiri 4 ki te 96.
x=\frac{-2±10}{2}
Tuhia te pūtakerua o te 100.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-2±10}{2} ina he tāpiri te ±. Tāpiri -2 ki te 10.
x=4
Whakawehe 8 ki te 2.
x=-\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{-2±10}{2} ina he tango te ±. Tango 10 mai i -2.
x=-6
Whakawehe -12 ki te 2.
x=4 x=-6
Kua oti te whārite te whakatau.
\left(x+1\right)^{2}=\frac{75}{3}
Whakawehea ngā taha e rua ki te 3.
\left(x+1\right)^{2}=25
Whakawehea te 75 ki te 3, kia riro ko 25.
\sqrt{\left(x+1\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=5 x+1=-5
Whakarūnātia.
x=4 x=-6
Me tango 1 mai i ngā taha e rua o te whārite.