Whakaoti mō x (complex solution)
x=\frac{-5+\sqrt{1415}i}{24}\approx -0.208333333+1.567353573i
x=\frac{-\sqrt{1415}i-5}{24}\approx -0.208333333-1.567353573i
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times 2^{2}x^{2}+5x+30=0
Whakarohaina te \left(2x\right)^{2}.
3\times 4x^{2}+5x+30=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
12x^{2}+5x+30=0
Whakareatia te 3 ki te 4, ka 12.
x=\frac{-5±\sqrt{5^{2}-4\times 12\times 30}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 5 mō b, me 30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 12\times 30}}{2\times 12}
Pūrua 5.
x=\frac{-5±\sqrt{25-48\times 30}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-5±\sqrt{25-1440}}{2\times 12}
Whakareatia -48 ki te 30.
x=\frac{-5±\sqrt{-1415}}{2\times 12}
Tāpiri 25 ki te -1440.
x=\frac{-5±\sqrt{1415}i}{2\times 12}
Tuhia te pūtakerua o te -1415.
x=\frac{-5±\sqrt{1415}i}{24}
Whakareatia 2 ki te 12.
x=\frac{-5+\sqrt{1415}i}{24}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{1415}i}{24} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{1415}.
x=\frac{-\sqrt{1415}i-5}{24}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{1415}i}{24} ina he tango te ±. Tango i\sqrt{1415} mai i -5.
x=\frac{-5+\sqrt{1415}i}{24} x=\frac{-\sqrt{1415}i-5}{24}
Kua oti te whārite te whakatau.
3\times 2^{2}x^{2}+5x+30=0
Whakarohaina te \left(2x\right)^{2}.
3\times 4x^{2}+5x+30=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
12x^{2}+5x+30=0
Whakareatia te 3 ki te 4, ka 12.
12x^{2}+5x=-30
Tangohia te 30 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{12x^{2}+5x}{12}=-\frac{30}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\frac{5}{12}x=-\frac{30}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}+\frac{5}{12}x=-\frac{5}{2}
Whakahekea te hautanga \frac{-30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}+\frac{5}{12}x+\left(\frac{5}{24}\right)^{2}=-\frac{5}{2}+\left(\frac{5}{24}\right)^{2}
Whakawehea te \frac{5}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{24}. Nā, tāpiria te pūrua o te \frac{5}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{12}x+\frac{25}{576}=-\frac{5}{2}+\frac{25}{576}
Pūruatia \frac{5}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{12}x+\frac{25}{576}=-\frac{1415}{576}
Tāpiri -\frac{5}{2} ki te \frac{25}{576} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{24}\right)^{2}=-\frac{1415}{576}
Tauwehea x^{2}+\frac{5}{12}x+\frac{25}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{24}\right)^{2}}=\sqrt{-\frac{1415}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{24}=\frac{\sqrt{1415}i}{24} x+\frac{5}{24}=-\frac{\sqrt{1415}i}{24}
Whakarūnātia.
x=\frac{-5+\sqrt{1415}i}{24} x=\frac{-\sqrt{1415}i-5}{24}
Me tango \frac{5}{24} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}