Aromātai
8\sqrt{2}\approx 11.313708499
Tohaina
Kua tāruatia ki te papatopenga
3\times 3\sqrt{2}+\frac{1}{5}\sqrt{50}-4\sqrt{\frac{1}{2}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
9\sqrt{2}+\frac{1}{5}\sqrt{50}-4\sqrt{\frac{1}{2}}
Whakareatia te 3 ki te 3, ka 9.
9\sqrt{2}+\frac{1}{5}\times 5\sqrt{2}-4\sqrt{\frac{1}{2}}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
9\sqrt{2}+\sqrt{2}-4\sqrt{\frac{1}{2}}
Me whakakore te 5 me te 5.
10\sqrt{2}-4\sqrt{\frac{1}{2}}
Pahekotia te 9\sqrt{2} me \sqrt{2}, ka 10\sqrt{2}.
10\sqrt{2}-4\times \frac{\sqrt{1}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
10\sqrt{2}-4\times \frac{1}{\sqrt{2}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
10\sqrt{2}-4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
10\sqrt{2}-4\times \frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
10\sqrt{2}-2\sqrt{2}
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
8\sqrt{2}
Pahekotia te 10\sqrt{2} me -2\sqrt{2}, ka 8\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}