Whakaoti mō n
n=\frac{3}{13}\approx 0.230769231
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\times 15}{13}-2n=3
Tuhia te 3\times \frac{15}{13} hei hautanga kotahi.
\frac{45}{13}-2n=3
Whakareatia te 3 ki te 15, ka 45.
-2n=3-\frac{45}{13}
Tangohia te \frac{45}{13} mai i ngā taha e rua.
-2n=\frac{39}{13}-\frac{45}{13}
Me tahuri te 3 ki te hautau \frac{39}{13}.
-2n=\frac{39-45}{13}
Tā te mea he rite te tauraro o \frac{39}{13} me \frac{45}{13}, me tango rāua mā te tango i ō raua taurunga.
-2n=-\frac{6}{13}
Tangohia te 45 i te 39, ka -6.
n=\frac{-\frac{6}{13}}{-2}
Whakawehea ngā taha e rua ki te -2.
n=\frac{-6}{13\left(-2\right)}
Tuhia te \frac{-\frac{6}{13}}{-2} hei hautanga kotahi.
n=\frac{-6}{-26}
Whakareatia te 13 ki te -2, ka -26.
n=\frac{3}{13}
Whakahekea te hautanga \frac{-6}{-26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}