Aromātai
\frac{11}{4}=2.75
Tauwehe
\frac{11}{2 ^ {2}} = 2\frac{3}{4} = 2.75
Tohaina
Kua tāruatia ki te papatopenga
3\times 1+2\left(-\frac{1}{2}\right)^{3}\times 1
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
3+2\left(-\frac{1}{2}\right)^{3}\times 1
Whakareatia te 3 ki te 1, ka 3.
3+2\left(-\frac{1}{8}\right)\times 1
Tātaihia te -\frac{1}{2} mā te pū o 3, kia riro ko -\frac{1}{8}.
3+\frac{2\left(-1\right)}{8}\times 1
Tuhia te 2\left(-\frac{1}{8}\right) hei hautanga kotahi.
3+\frac{-2}{8}\times 1
Whakareatia te 2 ki te -1, ka -2.
3-\frac{1}{4}
Whakahekea te hautanga \frac{-2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{12}{4}-\frac{1}{4}
Me tahuri te 3 ki te hautau \frac{12}{4}.
\frac{12-1}{4}
Tā te mea he rite te tauraro o \frac{12}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{11}{4}
Tangohia te 1 i te 12, ka 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}