Aromātai
y
Kimi Pārōnaki e ai ki y
1
Tohaina
Kua tāruatia ki te papatopenga
6x-3y-2\left(3x-2y\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-y.
6x-3y-6x+4y
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 3x-2y.
-3y+4y
Pahekotia te 6x me -6x, ka 0.
y
Pahekotia te -3y me 4y, ka y.
\frac{\mathrm{d}}{\mathrm{d}y}(6x-3y-2\left(3x-2y\right))
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-y.
\frac{\mathrm{d}}{\mathrm{d}y}(6x-3y-6x+4y)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 3x-2y.
\frac{\mathrm{d}}{\mathrm{d}y}(-3y+4y)
Pahekotia te 6x me -6x, ka 0.
\frac{\mathrm{d}}{\mathrm{d}y}(y)
Pahekotia te -3y me 4y, ka y.
y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
y^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}