Whakaoti mō x (complex solution)
x=\frac{175+5\sqrt{247}i}{24}\approx 7.291666667+3.274215343i
x=\frac{-5\sqrt{247}i+175}{24}\approx 7.291666667-3.274215343i
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(2x-10\right)\left(3x-30\right)=-5\left(3x+100\right)
Whakareatia te 3 ki te 2, ka 6.
\left(12x-60\right)\left(3x-30\right)=-5\left(3x+100\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 2x-10.
36x^{2}-540x+1800=-5\left(3x+100\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x-60 ki te 3x-30 ka whakakotahi i ngā kupu rite.
36x^{2}-540x+1800=-15x-500
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 3x+100.
36x^{2}-540x+1800+15x=-500
Me tāpiri te 15x ki ngā taha e rua.
36x^{2}-525x+1800=-500
Pahekotia te -540x me 15x, ka -525x.
36x^{2}-525x+1800+500=0
Me tāpiri te 500 ki ngā taha e rua.
36x^{2}-525x+2300=0
Tāpirihia te 1800 ki te 500, ka 2300.
x=\frac{-\left(-525\right)±\sqrt{\left(-525\right)^{2}-4\times 36\times 2300}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, -525 mō b, me 2300 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-525\right)±\sqrt{275625-4\times 36\times 2300}}{2\times 36}
Pūrua -525.
x=\frac{-\left(-525\right)±\sqrt{275625-144\times 2300}}{2\times 36}
Whakareatia -4 ki te 36.
x=\frac{-\left(-525\right)±\sqrt{275625-331200}}{2\times 36}
Whakareatia -144 ki te 2300.
x=\frac{-\left(-525\right)±\sqrt{-55575}}{2\times 36}
Tāpiri 275625 ki te -331200.
x=\frac{-\left(-525\right)±15\sqrt{247}i}{2\times 36}
Tuhia te pūtakerua o te -55575.
x=\frac{525±15\sqrt{247}i}{2\times 36}
Ko te tauaro o -525 ko 525.
x=\frac{525±15\sqrt{247}i}{72}
Whakareatia 2 ki te 36.
x=\frac{525+15\sqrt{247}i}{72}
Nā, me whakaoti te whārite x=\frac{525±15\sqrt{247}i}{72} ina he tāpiri te ±. Tāpiri 525 ki te 15i\sqrt{247}.
x=\frac{175+5\sqrt{247}i}{24}
Whakawehe 525+15i\sqrt{247} ki te 72.
x=\frac{-15\sqrt{247}i+525}{72}
Nā, me whakaoti te whārite x=\frac{525±15\sqrt{247}i}{72} ina he tango te ±. Tango 15i\sqrt{247} mai i 525.
x=\frac{-5\sqrt{247}i+175}{24}
Whakawehe 525-15i\sqrt{247} ki te 72.
x=\frac{175+5\sqrt{247}i}{24} x=\frac{-5\sqrt{247}i+175}{24}
Kua oti te whārite te whakatau.
6\left(2x-10\right)\left(3x-30\right)=-5\left(3x+100\right)
Whakareatia te 3 ki te 2, ka 6.
\left(12x-60\right)\left(3x-30\right)=-5\left(3x+100\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 2x-10.
36x^{2}-540x+1800=-5\left(3x+100\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x-60 ki te 3x-30 ka whakakotahi i ngā kupu rite.
36x^{2}-540x+1800=-15x-500
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 3x+100.
36x^{2}-540x+1800+15x=-500
Me tāpiri te 15x ki ngā taha e rua.
36x^{2}-525x+1800=-500
Pahekotia te -540x me 15x, ka -525x.
36x^{2}-525x=-500-1800
Tangohia te 1800 mai i ngā taha e rua.
36x^{2}-525x=-2300
Tangohia te 1800 i te -500, ka -2300.
\frac{36x^{2}-525x}{36}=-\frac{2300}{36}
Whakawehea ngā taha e rua ki te 36.
x^{2}+\left(-\frac{525}{36}\right)x=-\frac{2300}{36}
Mā te whakawehe ki te 36 ka wetekia te whakareanga ki te 36.
x^{2}-\frac{175}{12}x=-\frac{2300}{36}
Whakahekea te hautanga \frac{-525}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{175}{12}x=-\frac{575}{9}
Whakahekea te hautanga \frac{-2300}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{175}{12}x+\left(-\frac{175}{24}\right)^{2}=-\frac{575}{9}+\left(-\frac{175}{24}\right)^{2}
Whakawehea te -\frac{175}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{175}{24}. Nā, tāpiria te pūrua o te -\frac{175}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{175}{12}x+\frac{30625}{576}=-\frac{575}{9}+\frac{30625}{576}
Pūruatia -\frac{175}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{175}{12}x+\frac{30625}{576}=-\frac{6175}{576}
Tāpiri -\frac{575}{9} ki te \frac{30625}{576} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{175}{24}\right)^{2}=-\frac{6175}{576}
Tauwehea x^{2}-\frac{175}{12}x+\frac{30625}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{175}{24}\right)^{2}}=\sqrt{-\frac{6175}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{175}{24}=\frac{5\sqrt{247}i}{24} x-\frac{175}{24}=-\frac{5\sqrt{247}i}{24}
Whakarūnātia.
x=\frac{175+5\sqrt{247}i}{24} x=\frac{-5\sqrt{247}i+175}{24}
Me tāpiri \frac{175}{24} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}