Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\sqrt{\frac{53\times 7}{100}\times 2}
Tuhia te 53\times \frac{7}{100} hei hautanga kotahi.
3\sqrt{\frac{371}{100}\times 2}
Whakareatia te 53 ki te 7, ka 371.
3\sqrt{\frac{371\times 2}{100}}
Tuhia te \frac{371}{100}\times 2 hei hautanga kotahi.
3\sqrt{\frac{742}{100}}
Whakareatia te 371 ki te 2, ka 742.
3\sqrt{\frac{371}{50}}
Whakahekea te hautanga \frac{742}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3\times \frac{\sqrt{371}}{\sqrt{50}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{371}{50}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{371}}{\sqrt{50}}.
3\times \frac{\sqrt{371}}{5\sqrt{2}}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
3\times \frac{\sqrt{371}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{371}}{5\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
3\times \frac{\sqrt{371}\sqrt{2}}{5\times 2}
Ko te pūrua o \sqrt{2} ko 2.
3\times \frac{\sqrt{742}}{5\times 2}
Hei whakarea \sqrt{371} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
3\times \frac{\sqrt{742}}{10}
Whakareatia te 5 ki te 2, ka 10.
\frac{3\sqrt{742}}{10}
Tuhia te 3\times \frac{\sqrt{742}}{10} hei hautanga kotahi.