Aromātai
-x^{2}+\frac{17x}{2}+\frac{39}{2}
Whakaroha
-x^{2}+\frac{17x}{2}+\frac{39}{2}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
3 \times \frac{ 1 }{ 6 } ((3 \times 2+x)2+(2x+3) \times (9-x))
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Whakareatia te 3 ki te \frac{1}{6}, ka \frac{3}{6}.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Whakareatia te 3 ki te 2, ka 6.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6+x ki te 2.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+3 ki ia tau o 9-x.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
Pahekotia te 18x me -3x, ka 15x.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
Pahekotia te 2x me 15x, ka 17x.
\frac{1}{2}\left(39+17x-2x^{2}\right)
Tāpirihia te 12 ki te 27, ka 39.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 39+17x-2x^{2}.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Whakareatia te \frac{1}{2} ki te 39, ka \frac{39}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
Whakareatia te \frac{1}{2} ki te 17, ka \frac{17}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
Whakareatia te \frac{1}{2} ki te -2, ka \frac{-2}{2}.
\frac{39}{2}+\frac{17}{2}x-x^{2}
Whakawehea te -2 ki te 2, kia riro ko -1.
\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Whakareatia te 3 ki te \frac{1}{6}, ka \frac{3}{6}.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Whakareatia te 3 ki te 2, ka 6.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6+x ki te 2.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+3 ki ia tau o 9-x.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
Pahekotia te 18x me -3x, ka 15x.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
Pahekotia te 2x me 15x, ka 17x.
\frac{1}{2}\left(39+17x-2x^{2}\right)
Tāpirihia te 12 ki te 27, ka 39.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 39+17x-2x^{2}.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Whakareatia te \frac{1}{2} ki te 39, ka \frac{39}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
Whakareatia te \frac{1}{2} ki te 17, ka \frac{17}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
Whakareatia te \frac{1}{2} ki te -2, ka \frac{-2}{2}.
\frac{39}{2}+\frac{17}{2}x-x^{2}
Whakawehea te -2 ki te 2, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}