Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

3\times \left(\frac{\sqrt{3}}{3}\right)^{2}+4\tan(45)+\cos(30)\cot(30)
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
3\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}+4\tan(45)+\cos(30)\cot(30)
Kia whakarewa i te \frac{\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{3\left(\sqrt{3}\right)^{2}}{3^{2}}+4\tan(45)+\cos(30)\cot(30)
Tuhia te 3\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} hei hautanga kotahi.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4\tan(45)+\cos(30)\cot(30)
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4\times 1+\cos(30)\cot(30)
Tīkina te uara \tan(45) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4+\cos(30)\cot(30)
Whakareatia te 4 ki te 1, ka 4.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4+\frac{\sqrt{3}}{2}\cot(30)
Tīkina te uara \cos(30) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4+\frac{\sqrt{3}}{2}\sqrt{3}
Tīkina te uara \cot(30) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{3}\right)^{2}}{3}+4+\frac{\sqrt{3}\sqrt{3}}{2}
Tuhia te \frac{\sqrt{3}}{2}\sqrt{3} hei hautanga kotahi.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{4\times 3}{3}+\frac{\sqrt{3}\sqrt{3}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4 ki te \frac{3}{3}.
\frac{\left(\sqrt{3}\right)^{2}+4\times 3}{3}+\frac{\sqrt{3}\sqrt{3}}{2}
Tā te mea he rite te tauraro o \frac{\left(\sqrt{3}\right)^{2}}{3} me \frac{4\times 3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2\left(\sqrt{3}\right)^{2}}{6}+4+\frac{3\sqrt{3}\sqrt{3}}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{\left(\sqrt{3}\right)^{2}}{3} ki te \frac{2}{2}. Whakareatia \frac{\sqrt{3}\sqrt{3}}{2} ki te \frac{3}{3}.
\frac{2\left(\sqrt{3}\right)^{2}+3\sqrt{3}\sqrt{3}}{6}+4
Tā te mea he rite te tauraro o \frac{2\left(\sqrt{3}\right)^{2}}{6} me \frac{3\sqrt{3}\sqrt{3}}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{4\times 2}{2}+\frac{\sqrt{3}\sqrt{3}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4 ki te \frac{2}{2}.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{4\times 2+\sqrt{3}\sqrt{3}}{2}
Tā te mea he rite te tauraro o \frac{4\times 2}{2} me \frac{\sqrt{3}\sqrt{3}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{8+3}{2}
Mahia ngā whakarea i roto o 4\times 2+\sqrt{3}\sqrt{3}.
\frac{\left(\sqrt{3}\right)^{2}}{3}+\frac{11}{2}
Mahia ngā tātaitai i roto o 8+3.
\frac{3}{3}+\frac{11}{2}
Ko te pūrua o \sqrt{3} ko 3.
1+\frac{11}{2}
Whakawehea te 3 ki te 3, kia riro ko 1.
\frac{13}{2}
Tāpirihia te 1 ki te \frac{11}{2}, ka \frac{13}{2}.