Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\sqrt{2x-3}=11-2\sqrt{7-x}
Me tango 2\sqrt{7-x} mai i ngā taha e rua o te whārite.
\left(3\sqrt{2x-3}\right)^{2}=\left(11-2\sqrt{7-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3^{2}\left(\sqrt{2x-3}\right)^{2}=\left(11-2\sqrt{7-x}\right)^{2}
Whakarohaina te \left(3\sqrt{2x-3}\right)^{2}.
9\left(\sqrt{2x-3}\right)^{2}=\left(11-2\sqrt{7-x}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9\left(2x-3\right)=\left(11-2\sqrt{7-x}\right)^{2}
Tātaihia te \sqrt{2x-3} mā te pū o 2, kia riro ko 2x-3.
18x-27=\left(11-2\sqrt{7-x}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te 2x-3.
18x-27=121-44\sqrt{7-x}+4\left(\sqrt{7-x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(11-2\sqrt{7-x}\right)^{2}.
18x-27=121-44\sqrt{7-x}+4\left(7-x\right)
Tātaihia te \sqrt{7-x} mā te pū o 2, kia riro ko 7-x.
18x-27=121-44\sqrt{7-x}+28-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 7-x.
18x-27=149-44\sqrt{7-x}-4x
Tāpirihia te 121 ki te 28, ka 149.
18x-27-\left(149-4x\right)=-44\sqrt{7-x}
Me tango 149-4x mai i ngā taha e rua o te whārite.
18x-27-149+4x=-44\sqrt{7-x}
Hei kimi i te tauaro o 149-4x, kimihia te tauaro o ia taurangi.
18x-176+4x=-44\sqrt{7-x}
Tangohia te 149 i te -27, ka -176.
22x-176=-44\sqrt{7-x}
Pahekotia te 18x me 4x, ka 22x.
\left(22x-176\right)^{2}=\left(-44\sqrt{7-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
484x^{2}-7744x+30976=\left(-44\sqrt{7-x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(22x-176\right)^{2}.
484x^{2}-7744x+30976=\left(-44\right)^{2}\left(\sqrt{7-x}\right)^{2}
Whakarohaina te \left(-44\sqrt{7-x}\right)^{2}.
484x^{2}-7744x+30976=1936\left(\sqrt{7-x}\right)^{2}
Tātaihia te -44 mā te pū o 2, kia riro ko 1936.
484x^{2}-7744x+30976=1936\left(7-x\right)
Tātaihia te \sqrt{7-x} mā te pū o 2, kia riro ko 7-x.
484x^{2}-7744x+30976=13552-1936x
Whakamahia te āhuatanga tohatoha hei whakarea te 1936 ki te 7-x.
484x^{2}-7744x+30976-13552=-1936x
Tangohia te 13552 mai i ngā taha e rua.
484x^{2}-7744x+17424=-1936x
Tangohia te 13552 i te 30976, ka 17424.
484x^{2}-7744x+17424+1936x=0
Me tāpiri te 1936x ki ngā taha e rua.
484x^{2}-5808x+17424=0
Pahekotia te -7744x me 1936x, ka -5808x.
x=\frac{-\left(-5808\right)±\sqrt{\left(-5808\right)^{2}-4\times 484\times 17424}}{2\times 484}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 484 mō a, -5808 mō b, me 17424 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5808\right)±\sqrt{33732864-4\times 484\times 17424}}{2\times 484}
Pūrua -5808.
x=\frac{-\left(-5808\right)±\sqrt{33732864-1936\times 17424}}{2\times 484}
Whakareatia -4 ki te 484.
x=\frac{-\left(-5808\right)±\sqrt{33732864-33732864}}{2\times 484}
Whakareatia -1936 ki te 17424.
x=\frac{-\left(-5808\right)±\sqrt{0}}{2\times 484}
Tāpiri 33732864 ki te -33732864.
x=-\frac{-5808}{2\times 484}
Tuhia te pūtakerua o te 0.
x=\frac{5808}{2\times 484}
Ko te tauaro o -5808 ko 5808.
x=\frac{5808}{968}
Whakareatia 2 ki te 484.
x=6
Whakawehe 5808 ki te 968.
3\sqrt{2\times 6-3}+2\sqrt{7-6}=11
Whakakapia te 6 mō te x i te whārite 3\sqrt{2x-3}+2\sqrt{7-x}=11.
11=11
Whakarūnātia. Ko te uara x=6 kua ngata te whārite.
x=6
Ko te whārite 3\sqrt{2x-3}=-2\sqrt{7-x}+11 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}