Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\times 3\sqrt{3}}{\sqrt{6}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{9\sqrt{3}}{\sqrt{6}}
Whakareatia te 3 ki te 3, ka 9.
\frac{9\sqrt{3}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{9\sqrt{3}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{9\sqrt{3}\sqrt{6}}{6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{9\sqrt{3}\sqrt{3}\sqrt{2}}{6}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{9\times 3\sqrt{2}}{6}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{27\sqrt{2}}{6}
Whakareatia te 9 ki te 3, ka 27.
\frac{9}{2}\sqrt{2}
Whakawehea te 27\sqrt{2} ki te 6, kia riro ko \frac{9}{2}\sqrt{2}.