Aromātai
\frac{59\sqrt{15}}{40}\approx 5.712650436
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\sqrt{\frac{6+2}{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Whakareatia te 2 ki te 3, ka 6.
\frac{3\sqrt{\frac{8}{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Tāpirihia te 6 ki te 2, ka 8.
\frac{3\times \frac{\sqrt{8}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{3}}.
\frac{3\times \frac{2\sqrt{2}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3\times \frac{2\sqrt{6}}{3}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{6}}{\frac{1}{2}}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Me whakakore te 3 me te 3.
2\sqrt{6}\times 2\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Whakawehe 2\sqrt{6} ki te \frac{1}{2} mā te whakarea 2\sqrt{6} ki te tau huripoki o \frac{1}{2}.
4\sqrt{6}\sqrt{\frac{2}{5}}-\frac{1}{8}\sqrt{15}
Whakareatia te 2 ki te 2, ka 4.
4\sqrt{6}\times \frac{\sqrt{2}}{\sqrt{5}}-\frac{1}{8}\sqrt{15}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{5}}.
4\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{1}{8}\sqrt{15}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
4\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{5}-\frac{1}{8}\sqrt{15}
Ko te pūrua o \sqrt{5} ko 5.
4\sqrt{6}\times \frac{\sqrt{10}}{5}-\frac{1}{8}\sqrt{15}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{4\sqrt{10}}{5}\sqrt{6}-\frac{1}{8}\sqrt{15}
Tuhia te 4\times \frac{\sqrt{10}}{5} hei hautanga kotahi.
\frac{4\sqrt{10}\sqrt{6}}{5}-\frac{1}{8}\sqrt{15}
Tuhia te \frac{4\sqrt{10}}{5}\sqrt{6} hei hautanga kotahi.
\frac{4\sqrt{60}}{5}-\frac{1}{8}\sqrt{15}
Hei whakarea \sqrt{10} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
\frac{4\times 2\sqrt{15}}{5}-\frac{1}{8}\sqrt{15}
Tauwehea te 60=2^{2}\times 15. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 15} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{15}. Tuhia te pūtakerua o te 2^{2}.
\frac{8\sqrt{15}}{5}-\frac{1}{8}\sqrt{15}
Whakareatia te 4 ki te 2, ka 8.
\frac{59}{40}\sqrt{15}
Pahekotia te \frac{8\sqrt{15}}{5} me -\frac{1}{8}\sqrt{15}, ka \frac{59}{40}\sqrt{15}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}