Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\sqrt{\frac{3}{3}-\frac{2}{3}+\left(\frac{1}{2}\right)^{3}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
3\sqrt{\frac{3-2}{3}+\left(\frac{1}{2}\right)^{3}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{2}{3}, me tango rāua mā te tango i ō raua taurunga.
3\sqrt{\frac{1}{3}+\left(\frac{1}{2}\right)^{3}}
Tangohia te 2 i te 3, ka 1.
3\sqrt{\frac{1}{3}+\frac{1}{8}}
Tātaihia te \frac{1}{2} mā te pū o 3, kia riro ko \frac{1}{8}.
3\sqrt{\frac{8}{24}+\frac{3}{24}}
Ko te maha noa iti rawa atu o 3 me 8 ko 24. Me tahuri \frac{1}{3} me \frac{1}{8} ki te hautau me te tautūnga 24.
3\sqrt{\frac{8+3}{24}}
Tā te mea he rite te tauraro o \frac{8}{24} me \frac{3}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3\sqrt{\frac{11}{24}}
Tāpirihia te 8 ki te 3, ka 11.
3\times \frac{\sqrt{11}}{\sqrt{24}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{11}{24}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{11}}{\sqrt{24}}.
3\times \frac{\sqrt{11}}{2\sqrt{6}}
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
3\times \frac{\sqrt{11}\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{11}}{2\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
3\times \frac{\sqrt{11}\sqrt{6}}{2\times 6}
Ko te pūrua o \sqrt{6} ko 6.
3\times \frac{\sqrt{66}}{2\times 6}
Hei whakarea \sqrt{11} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
3\times \frac{\sqrt{66}}{12}
Whakareatia te 2 ki te 6, ka 12.
\frac{\sqrt{66}}{4}
Whakakorea atu te tauwehe pūnoa nui rawa 12 i roto i te 3 me te 12.