Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\sqrt{\frac{3\times 27}{2}}
Tuhia te \frac{3}{2}\times 27 hei hautanga kotahi.
3\sqrt{\frac{81}{2}}
Whakareatia te 3 ki te 27, ka 81.
3\times \frac{\sqrt{81}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{81}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{81}}{\sqrt{2}}.
3\times \frac{9}{\sqrt{2}}
Tātaitia te pūtakerua o 81 kia tae ki 9.
3\times \frac{9\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{9}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
3\times \frac{9\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{3\times 9\sqrt{2}}{2}
Tuhia te 3\times \frac{9\sqrt{2}}{2} hei hautanga kotahi.
\frac{27\sqrt{2}}{2}
Whakareatia te 3 ki te 9, ka 27.