Aromātai
\frac{27\sqrt{2}}{2}\approx 19.091883092
Tohaina
Kua tāruatia ki te papatopenga
3\sqrt{\frac{3\times 27}{2}}
Tuhia te \frac{3}{2}\times 27 hei hautanga kotahi.
3\sqrt{\frac{81}{2}}
Whakareatia te 3 ki te 27, ka 81.
3\times \frac{\sqrt{81}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{81}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{81}}{\sqrt{2}}.
3\times \frac{9}{\sqrt{2}}
Tātaitia te pūtakerua o 81 kia tae ki 9.
3\times \frac{9\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{9}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
3\times \frac{9\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{3\times 9\sqrt{2}}{2}
Tuhia te 3\times \frac{9\sqrt{2}}{2} hei hautanga kotahi.
\frac{27\sqrt{2}}{2}
Whakareatia te 3 ki te 9, ka 27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}