Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\sqrt{3y-1}+\sqrt[3]{1-2x}-\sqrt[3]{1-2x}=-\sqrt[3]{1-2x}
Me tango \sqrt[3]{1-2x} mai i ngā taha e rua o te whārite.
3\sqrt{3y-1}=-\sqrt[3]{1-2x}
Mā te tango i te \sqrt[3]{1-2x} i a ia ake anō ka toe ko te 0.
\frac{3\sqrt{3y-1}}{3}=-\frac{\sqrt[3]{1-2x}}{3}
Whakawehea ngā taha e rua ki te 3.
\sqrt{3y-1}=-\frac{\sqrt[3]{1-2x}}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
3y-1=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}
Pūruatia ngā taha e rua o te whārite.
3y-1-\left(-1\right)=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
3y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
3y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1
Tango -1 mai i \frac{\left(1-2x\right)^{\frac{2}{3}}}{9}.
\frac{3y}{3}=\frac{\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{27}+\frac{1}{3}
Whakawehe \frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1 ki te 3.