Aromātai
\frac{31\sqrt{6}}{16}\approx 4.745886377
Tohaina
Kua tāruatia ki te papatopenga
3\sqrt{\frac{6+2}{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Whakareatia te 2 ki te 3, ka 6.
3\sqrt{\frac{8}{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Tāpirihia te 6 ki te 2, ka 8.
3\times \frac{\sqrt{8}}{\sqrt{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{3}}.
3\times \frac{2\sqrt{2}}{\sqrt{3}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
3\times \frac{2\sqrt{2}\sqrt{3}}{3}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Ko te pūrua o \sqrt{3} ko 3.
3\times \frac{2\sqrt{6}}{3}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
2\sqrt{6}+\frac{1}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Me whakakore te 3 me te 3.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}}{\sqrt{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{5}}.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(-\frac{1}{8}\right)\sqrt{15}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{2}\sqrt{5}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
Ko te pūrua o \sqrt{5} ko 5.
2\sqrt{6}+\frac{1}{2}\times \frac{\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
2\sqrt{6}+\frac{1\left(-1\right)}{2\times 8}\times \frac{\sqrt{10}}{5}\sqrt{15}
Me whakarea te \frac{1}{2} ki te -\frac{1}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
2\sqrt{6}+\frac{-1}{16}\times \frac{\sqrt{10}}{5}\sqrt{15}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{2\times 8}.
2\sqrt{6}-\frac{1}{16}\times \frac{\sqrt{10}}{5}\sqrt{15}
Ka taea te hautanga \frac{-1}{16} te tuhi anō ko -\frac{1}{16} mā te tango i te tohu tōraro.
2\sqrt{6}+\frac{-\sqrt{10}}{16\times 5}\sqrt{15}
Me whakarea te -\frac{1}{16} ki te \frac{\sqrt{10}}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
2\sqrt{6}+\frac{-\sqrt{10}\sqrt{15}}{16\times 5}
Tuhia te \frac{-\sqrt{10}}{16\times 5}\sqrt{15} hei hautanga kotahi.
\frac{2\sqrt{6}\times 16\times 5}{16\times 5}+\frac{-\sqrt{10}\sqrt{15}}{16\times 5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{6} ki te \frac{16\times 5}{16\times 5}.
\frac{2\sqrt{6}\times 16\times 5-\sqrt{10}\sqrt{15}}{16\times 5}
Tā te mea he rite te tauraro o \frac{2\sqrt{6}\times 16\times 5}{16\times 5} me \frac{-\sqrt{10}\sqrt{15}}{16\times 5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{160\sqrt{6}-5\sqrt{6}}{16\times 5}
Mahia ngā whakarea i roto o 2\sqrt{6}\times 16\times 5-\sqrt{10}\sqrt{15}.
\frac{155\sqrt{6}}{16\times 5}
Mahia ngā tātaitai i roto o 160\sqrt{6}-5\sqrt{6}.
\frac{31\sqrt{6}}{16}
Me whakakore tahi te 5 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}