Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
9-3x+9=2\left(x-4\right)+6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3-x.
18-3x=2\left(x-4\right)+6
Tāpirihia te 9 ki te 9, ka 18.
18-3x=2x-8+6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
18-3x=2x-2
Tāpirihia te -8 ki te 6, ka -2.
18-3x-2x=-2
Tangohia te 2x mai i ngā taha e rua.
18-5x=-2
Pahekotia te -3x me -2x, ka -5x.
-5x=-2-18
Tangohia te 18 mai i ngā taha e rua.
-5x=-20
Tangohia te 18 i te -2, ka -20.
x=\frac{-20}{-5}
Whakawehea ngā taha e rua ki te -5.
x=4
Whakawehea te -20 ki te -5, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}