Aromātai
\frac{507}{5}=101.4
Tauwehe
\frac{3 \cdot 13 ^ {2}}{5} = 101\frac{2}{5} = 101.4
Pātaitai
Arithmetic
3 \frac{ 2 }{ 5 } +98
Tohaina
Kua tāruatia ki te papatopenga
\frac{15+2}{5}+98
Whakareatia te 3 ki te 5, ka 15.
\frac{17}{5}+98
Tāpirihia te 15 ki te 2, ka 17.
\frac{17}{5}+\frac{490}{5}
Me tahuri te 98 ki te hautau \frac{490}{5}.
\frac{17+490}{5}
Tā te mea he rite te tauraro o \frac{17}{5} me \frac{490}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{507}{5}
Tāpirihia te 17 ki te 490, ka 507.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}