Whakaoti mō x
x=\frac{\sqrt{41}}{2}-\frac{19}{6}\approx 0.034895452
x=-\frac{\sqrt{41}}{2}-\frac{19}{6}\approx -6.368228785
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times 4\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12x, arā, te tauraro pātahi he tino iti rawa te kitea o 3x,6,4.
12\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Whakareatia te 3 ki te 4, ka 12.
24\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Whakareatia te 12 ki te 2, ka 24.
4-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Whakareatia te 24 ki te \frac{1}{6}, ka 4.
4-9\left(2x+18\right)x=-48x
Whakareatia te -\frac{3}{4} ki te 12, ka -9.
4+\left(-18x-162\right)x=-48x
Whakamahia te āhuatanga tohatoha hei whakarea te -9 ki te 2x+18.
4-18x^{2}-162x=-48x
Whakamahia te āhuatanga tohatoha hei whakarea te -18x-162 ki te x.
4-18x^{2}-162x+48x=0
Me tāpiri te 48x ki ngā taha e rua.
4-18x^{2}-114x=0
Pahekotia te -162x me 48x, ka -114x.
-18x^{2}-114x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-114\right)±\sqrt{\left(-114\right)^{2}-4\left(-18\right)\times 4}}{2\left(-18\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -18 mō a, -114 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-114\right)±\sqrt{12996-4\left(-18\right)\times 4}}{2\left(-18\right)}
Pūrua -114.
x=\frac{-\left(-114\right)±\sqrt{12996+72\times 4}}{2\left(-18\right)}
Whakareatia -4 ki te -18.
x=\frac{-\left(-114\right)±\sqrt{12996+288}}{2\left(-18\right)}
Whakareatia 72 ki te 4.
x=\frac{-\left(-114\right)±\sqrt{13284}}{2\left(-18\right)}
Tāpiri 12996 ki te 288.
x=\frac{-\left(-114\right)±18\sqrt{41}}{2\left(-18\right)}
Tuhia te pūtakerua o te 13284.
x=\frac{114±18\sqrt{41}}{2\left(-18\right)}
Ko te tauaro o -114 ko 114.
x=\frac{114±18\sqrt{41}}{-36}
Whakareatia 2 ki te -18.
x=\frac{18\sqrt{41}+114}{-36}
Nā, me whakaoti te whārite x=\frac{114±18\sqrt{41}}{-36} ina he tāpiri te ±. Tāpiri 114 ki te 18\sqrt{41}.
x=-\frac{\sqrt{41}}{2}-\frac{19}{6}
Whakawehe 114+18\sqrt{41} ki te -36.
x=\frac{114-18\sqrt{41}}{-36}
Nā, me whakaoti te whārite x=\frac{114±18\sqrt{41}}{-36} ina he tango te ±. Tango 18\sqrt{41} mai i 114.
x=\frac{\sqrt{41}}{2}-\frac{19}{6}
Whakawehe 114-18\sqrt{41} ki te -36.
x=-\frac{\sqrt{41}}{2}-\frac{19}{6} x=\frac{\sqrt{41}}{2}-\frac{19}{6}
Kua oti te whārite te whakatau.
3\times 4\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12x, arā, te tauraro pātahi he tino iti rawa te kitea o 3x,6,4.
12\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Whakareatia te 3 ki te 4, ka 12.
24\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Whakareatia te 12 ki te 2, ka 24.
4-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
Whakareatia te 24 ki te \frac{1}{6}, ka 4.
4-9\left(2x+18\right)x=-48x
Whakareatia te -\frac{3}{4} ki te 12, ka -9.
4+\left(-18x-162\right)x=-48x
Whakamahia te āhuatanga tohatoha hei whakarea te -9 ki te 2x+18.
4-18x^{2}-162x=-48x
Whakamahia te āhuatanga tohatoha hei whakarea te -18x-162 ki te x.
4-18x^{2}-162x+48x=0
Me tāpiri te 48x ki ngā taha e rua.
4-18x^{2}-114x=0
Pahekotia te -162x me 48x, ka -114x.
-18x^{2}-114x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-18x^{2}-114x}{-18}=-\frac{4}{-18}
Whakawehea ngā taha e rua ki te -18.
x^{2}+\left(-\frac{114}{-18}\right)x=-\frac{4}{-18}
Mā te whakawehe ki te -18 ka wetekia te whakareanga ki te -18.
x^{2}+\frac{19}{3}x=-\frac{4}{-18}
Whakahekea te hautanga \frac{-114}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}+\frac{19}{3}x=\frac{2}{9}
Whakahekea te hautanga \frac{-4}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{19}{3}x+\left(\frac{19}{6}\right)^{2}=\frac{2}{9}+\left(\frac{19}{6}\right)^{2}
Whakawehea te \frac{19}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{19}{6}. Nā, tāpiria te pūrua o te \frac{19}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{19}{3}x+\frac{361}{36}=\frac{2}{9}+\frac{361}{36}
Pūruatia \frac{19}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{19}{3}x+\frac{361}{36}=\frac{41}{4}
Tāpiri \frac{2}{9} ki te \frac{361}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{19}{6}\right)^{2}=\frac{41}{4}
Tauwehea x^{2}+\frac{19}{3}x+\frac{361}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{6}\right)^{2}}=\sqrt{\frac{41}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{19}{6}=\frac{\sqrt{41}}{2} x+\frac{19}{6}=-\frac{\sqrt{41}}{2}
Whakarūnātia.
x=\frac{\sqrt{41}}{2}-\frac{19}{6} x=-\frac{\sqrt{41}}{2}-\frac{19}{6}
Me tango \frac{19}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}