Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6\left(3\times 2+1\right)-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,4.
6\left(6+1\right)-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Whakareatia te 3 ki te 2, ka 6.
6\times 7-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Tāpirihia te 6 ki te 1, ka 7.
42-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Whakareatia te 6 ki te 7, ka 42.
42-4\left(6+1\right)y=3\left(3\times 4+1\right)
Whakareatia te 2 ki te 3, ka 6.
42-4\times 7y=3\left(3\times 4+1\right)
Tāpirihia te 6 ki te 1, ka 7.
42-28y=3\left(3\times 4+1\right)
Whakareatia te 4 ki te 7, ka 28.
42-28y=3\left(12+1\right)
Whakareatia te 3 ki te 4, ka 12.
42-28y=3\times 13
Tāpirihia te 12 ki te 1, ka 13.
42-28y=39
Whakareatia te 3 ki te 13, ka 39.
-28y=39-42
Tangohia te 42 mai i ngā taha e rua.
-28y=-3
Tangohia te 42 i te 39, ka -3.
y=\frac{-3}{-28}
Whakawehea ngā taha e rua ki te -28.
y=\frac{3}{28}
Ka taea te hautanga \frac{-3}{-28} te whakamāmā ki te \frac{3}{28} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.