Whakaoti mō y
y=\frac{3}{28}\approx 0.107142857
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
3 \frac{ 1 }{ 2 } -2 \frac{ 1 }{ 3 } y = 3 \frac{ 1 }{ 4 }
Tohaina
Kua tāruatia ki te papatopenga
6\left(3\times 2+1\right)-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,4.
6\left(6+1\right)-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Whakareatia te 3 ki te 2, ka 6.
6\times 7-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Tāpirihia te 6 ki te 1, ka 7.
42-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Whakareatia te 6 ki te 7, ka 42.
42-4\left(6+1\right)y=3\left(3\times 4+1\right)
Whakareatia te 2 ki te 3, ka 6.
42-4\times 7y=3\left(3\times 4+1\right)
Tāpirihia te 6 ki te 1, ka 7.
42-28y=3\left(3\times 4+1\right)
Whakareatia te 4 ki te 7, ka 28.
42-28y=3\left(12+1\right)
Whakareatia te 3 ki te 4, ka 12.
42-28y=3\times 13
Tāpirihia te 12 ki te 1, ka 13.
42-28y=39
Whakareatia te 3 ki te 13, ka 39.
-28y=39-42
Tangohia te 42 mai i ngā taha e rua.
-28y=-3
Tangohia te 42 i te 39, ka -3.
y=\frac{-3}{-28}
Whakawehea ngā taha e rua ki te -28.
y=\frac{3}{28}
Ka taea te hautanga \frac{-3}{-28} te whakamāmā ki te \frac{3}{28} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}