Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
180\times \frac{3\times 15+7}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Me whakarea ngā taha e rua o te whārite ki te 195, arā, te tauraro pātahi he tino iti rawa te kitea o 15,13.
180\times \frac{45+7}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Whakareatia te 3 ki te 15, ka 45.
180\times \frac{52}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Tāpirihia te 45 ki te 7, ka 52.
\frac{180\times 52}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Tuhia te 180\times \frac{52}{15} hei hautanga kotahi.
\frac{9360}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Whakareatia te 180 ki te 52, ka 9360.
624-13\left(3\times 15+8\right)=676\times \frac{124}{13}
Whakawehea te 9360 ki te 15, kia riro ko 624.
624-13\left(45+8\right)=676\times \frac{124}{13}
Whakareatia te 3 ki te 15, ka 45.
624-13\times 53=676\times \frac{124}{13}
Tāpirihia te 45 ki te 8, ka 53.
624-689=676\times \frac{124}{13}
Whakareatia te -13 ki te 53, ka -689.
-65=676\times \frac{124}{13}
Tangohia te 689 i te 624, ka -65.
-65=\frac{676\times 124}{13}
Tuhia te 676\times \frac{124}{13} hei hautanga kotahi.
-65=\frac{83824}{13}
Whakareatia te 676 ki te 124, ka 83824.
-65=6448
Whakawehea te 83824 ki te 13, kia riro ko 6448.
\text{false}
Whakatauritea te -65 me te 6448.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}